How will peak fossil fuels impact climate change?
Fossil fuels are ultimately a finite resource – the definition of non-renewable energy. Burning of these fuels – coal, oil and gas – is the main driver of climate change. So could the peak of fossil fuels help mitigate warming?
The short answer is maybe … but perhaps not how you might think.
In a paper published this month in the journal Fuel, my colleagues and I suggest that limits to fossil fuel availability might take climate Armageddon off the table, although we will still need to keep some fossil fuels in the ground for the best chance of keeping warming below 2C.
But more importantly, the peak of Chinese coal use is changing the face of global alternative energy industry development, and is soon likely to impact on international positioning for a low-emissions future.
Now for the long answer.
Predicting climate change
Predicting future climate change is dogged by two fundamental uncertainties: the dosage of greenhouse gas that human civilisation will add to the atmosphere, and how Earth’s climate and feedback systems will respond to it.
In the absence of a crystal ball for the future of emissions, the Intergovernmental Panel on Climate Change (IPCC) has adopted a scenario-based approach which highlights four representative concentration pathways (or RCPs). These are named after how much extra heating they add to the earth (in watts per square metre).
The relationship between emissions, and temperature projections.IPCC
From these scenarios the IPCC has developed temperature scenarios. So the RCP2.6 scenario is expected to restrict climate change to below 2C, whereas RCP8.5 represents catastrophic climate change of around 4C by the end of this century, rising to perhaps 8C in the ensuing centuries.
Fossil fuels forecast
The key thing to note here is that the emissions scenarios are demand-focused scenarios that have been developed to reflect possibilities for potential fossil fuel consumption. They explore a range of scenarios that include increasing global population and living standards, as well as the possible impact of new alternative energy technologies and global emissions-reduction agreements.
Instead of examining demand scenarios for fossil fuels, our work has focused on supply constraints to future fossil fuel production. Our work is not a forecast of future fossil fuel production and consumption, but rather seeks to determine the upper bounds of the geological resource and how it might be brought to market using normal supply and demand interactions.
We developed three projections based on different estimates of these Ultimately Recoverable Resources (URR). URR is the proportion of total fossil fuel resources that can be viably extracted now, and in the future (this accounts for some resources that are technologically inaccessible now becoming extractable in the future). The low case used the most pessimistic literature resource availability estimates, whereas the high case used the most optimistic estimates.
We also included a “best guess” estimate by choosing country-level resource values that we considered most likely. We then compared the resulting emissions profiles for the three upper bounds to the published IPCC emissions scenarios, as shown in the figure below.
Our projections for fossil fuel supply (black) matched with emissions scenarios (colours). RCP8.5 is the worst, RCP2.6 the best.Gary Ellem
In comparison to the published emissions scenarios, we found that it was very unlikely that enough fossil fuels could be brought to market to deliver the RCP8.5 scenario and we would recommend that this be removed from the IPCC scenarios in future assessment reports.
Mining out the optimistic fossil fuel supply base could perhaps deliver the RCP6 scenario, however, our best guess limit to fossil fuel availability caps the upper limit of emissions exposure to the RCP4.5 scenario (roughly equivalent to a median estimate of 2C warming).
But even under the low resource availability scenario, it will be necessary to leave some fossil fuels untapped if we are to meet the conditions for the RCP2.6 scenario or lower (to have more than a 90% chance of avoiding 2C temperature rise).
To sum up, our supply side assessment suggests that even if the climate Armageddon of the RPC8.5 scenario were desirable, it is unlikely that enough new fossil fuel resources could be discovered in time and brought to market to deliver it. To be clear, there is still much to worry about with the RPC4.5 and RPC6 scenarios which are still possible at the limits of likely fossil fuel resources.
So a simple reflection on global fossil fuel limitation won’t save us … but nations don’t face peak fuels at the same time. A country-level analysis of peak fuels suggests the possibility of a very different future.
How China could shake the world
As part of our assessment we looked closely at the fossil fuel production projections for four countries including China, Canada, the United States and Australia. Of these, China is by far the most intriguing.
China has little in the way of oil and gas resources and so has established its remarkable industrial growth on exploiting its substantial coal resources. Our projections indicate that the rapid expansion in Chinese coal mining is rapidly depleting this resource, with Chinese peak coal imminent in the mid-2020s under even the high fossil fuel scenario, as seen in the projections below.
Various scenarios for China’s fossil fuel supply.
Gary Ellem
China is well aware of this and is currently scrambling to cap coal consumption and develop alternative energy projects and industries. Its leaders understand that the alternative energy sector is really an advanced manufacturing sector, and have moved to position themselves strategically as the world leader in solar, wind, hydro, battery and nuclear technology construction and manufacturing.
As fossil fuels start to fail China as a path to economic and energy security, China will join other regions in a similar position, such as the European Union nations, which have largely depleted their fossil fuel reserves.
For these nations focused on alternative energy investment for energy and economic security, global action on climate change is strategically aligned with their industrial strength. We can therefore expect them to pressure for increasing global action as a method of improving their strategic global trading position. We may see the beginnings of this transition at this year’s international climate talks in Paris this year, but it will take a few more years for the Chinese shift to play out as they exploit the remainder of their coal resource and gain confidence in the ability of their alternative energy sector to scale.
The question then becomes “can the USA manufacturing sector afford to be out of these global alternative energy markets?”. Our guess is “no” and a global tipping point will have been reached in the alternative energy switch.
This is perhaps the most profound way that peak fuels may contribute to a low-emissions future.
This article is published in collaboration with The Conversation. Publication does not imply endorsement of views by the World Economic Forum.
To keep up with the Agenda subscribe to our weekly newsletter.
Author: Gary Ellem is a Conjoint Academic in Sustainability at University of Newcastle
Image: The sun is seen behind smoke billowing from a chimney of a heating plant in Taiyuan. REUTERS/Stringer.
Don't miss any update on this topic
Create a free account and access your personalized content collection with our latest publications and analyses.
License and Republishing
World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.
The views expressed in this article are those of the author alone and not the World Economic Forum.
Stay up to date:
Oil and Gas
The Agenda Weekly
A weekly update of the most important issues driving the global agenda
You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.
More on Energy TransitionSee all
Maciej Kolaczkowski and Debmalya Sen
November 22, 2024