Fourth Industrial Revolution

3 steps to big data leadership

David Jonker

I saw a poster the other day, that said, “Don’t look back, you’re not going that way.” It’s good advice for life in general but also for business. Companies today no longer need to constantly look in their rear view mirror to try and piece together what’s coming. Big Data is enabling them to take a forward-looking view of the business, bringing with it the potential to make meaningful changes that are increasingly predictive and real time in nature.

In a recent study into Big Data innovators, IDC found that European organisations are starting to see real value from Big Data and analytics with 72 per cent seeing an ROI in less than twelve months. In fact, the UK and Germany are the furthest ahead when it comes to incorporating technology-led transformation as an essential part of their strategy.

But not everyone moves at the same pace. IDC recently created a Big Data Maturity Model to help organisations understand where they are in the five stages of Big Data maturity: ad hoc, opportunistic, repeatable, managed and optimised. (The research is well worth a read if you’re interested in finding out where your organisation is on this scale). Clearly, we’d all love to be at the Optimised stage so I thought I’d share the three key recommendations IDC discovered in its research profiling Big Data leaders.

  • First, ensure you have a very clear desired outcome and business case for your Big Data project.Agreement at the outset will help frame all your decisions moving forward. It also ensures you don’t surprise any lines of business or departments along the way! It’s important to consolidate and co-ordinate budget across the business for Big Data projects, while keeping a degree of flexibility for specific ad-hoc ones. With funding in place, each new Big Data project requires its own business case with defined outcomes around revenue, cost reduction, risk mitigation or other relevant metrics to determine levels of investment against ROI.
  • Second, put a dynamic Big Data strategy in place. By this I mean treat the strategy as a fluid and transparent concept with continuous updates and input from relevant stakeholders, including IT, analytics teams, business executives and users across the organisation.  Leverage best practices from a leading department or business unit so they can be replicated into new areas. IT should ensure that the right governance model and integration capabilities are put in place from the outset. It’s also important to make sure that the strategy addresses key considerations around your project – namely intent, data, people, process and technology –  and most importantly, it must have C-Level support and sign off.
  • Finally, set up a Big Data competency centre that includes stakeholders from IT, business and analytics functions. Ideally, this should sit in the business under the COO or CEO if appropriate, and should bring together all components of a Big Data strategy, including stakeholders, technology architecture, analytical skills, and vendor and service management. This not only helps raise the profile of Big Data projects internally, but should also facilitate with setting goals around moving the organisation to new levels of maturity and readiness.

When implemented well, Big Data is taking organisations to new levels of business transformation. By understanding where your organisation is on this Big Data Maturity Model, you can gain greater insight into your company’s own journey.

This article is published in collaboration with SAP Community Network. Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: David Jonker is director of Big Data at SAP, and is responsible for the go-to-market initiatives across SAP’s data management and analytics platforms.

Image: Internet LAN cables are pictured in this photo illustration taken in Sydney. REUTERS/Tim Wimborne.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Data Science

Related topics:
Fourth Industrial RevolutionLeadership
Share:
The Big Picture
Explore and monitor how Innovation is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

The rise of gender-inclusive agritech and why it matters

Piyush Gupta and Drishti Kumar

December 19, 2024

How investing in connectivity and digital infrastructure can be a catalyst for inclusion and empowering people

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum