How to prevent flu outbreaks

Stan Finkelstein
Senior Research Scientist, MIT
Share:
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Future of Global Health and Healthcare

How can we better avoid the flu? A new paper co-authored by researchers at MIT examines the best ways to reduce the likelihood that individuals and groups will become infected with the flu, both by diligent use of non-pharmeceutical interventions (NPIs) and by effective deployments of vaccine.

The paper, “Engineering Effective Responses to Influenza Outbreaks,” has been published in Service Science by Stan N. Finkelstein, senior research scientist in MIT’s Engineering Systems Division and the Harvard-MIT Division of Health Sciences and Technology and associate professor of medicine at Harvard Medical School; Richard C. Larson, the Mitsui Professor of Engineering Systems at MIT and principal investigator of the MIT BLOSSOMS Initiative; Karima Nigmatulina PhD ’09, general director at the Institute of Master Planning for the city of Moscow in Russia; Anna Teytelman ’08 PhD ’12, a software engineer at Google.

The researchers argue that the mean number of new flu infections directly generated by a ‘typical’ newly infected person in a fully susceptible population — known as R0 — is local and contextual and can be moved up or down in numerical value by actions of individuals in the local environment. The paper’s mathematical models and analysis of historical events, plus conversations with flu experts, suggest that R0 does not exist as a single value, and it should not be announced, such as by the World Health Organization or the U.S. Centers for Disease Control and Prevention (CDC), in that way.

The second key finding relates to deployment of flu vaccines when they arrive late and in small quantities when confronting a novel flu virus, as with H1N1 in 2009. The current CDC vaccine deployment plan distributes vaccine units to states in direct proportion to the U.S. Census population of each state, regardless of progression of the flu wave in each state. Such a plan can deliver vaccines to states whose flu waves have already come and gone, meaning that the vaccines in those states will be of no value. And those misdirected vaccine units could prove quite beneficial in averting flu infections in other states whose flu waves have not yet peaked. The paper projects that up to 5 million Americans who became ill with H1N1 flu in 2009 might not have become infected if an alternative, more adaptive vaccine allocation plan had been in effect. The paper provides the essentials for such a new plan.

This research has been sponsored by IBM, the Sloan Foundation of New York, and the CDC via a collaboration with the Harvard T.H. Chan School of Public Health Center for Public Health Preparedness.

This article is published in collaboration with MIT News. Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: Stan N. Finkelstein, M.D. is a Senior Research Scientist in the the MIT Engineering Systems Division.

Image: Vaccines are placed on a tray inside the Taipei City Hospital October 1, 2010. REUTERS/Nicky Loh.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

About Us

Events

Media

Partners & Members

  • Sign in
  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum