Education and Skills

Why Mars could soon have rings like Saturn

The planet Mars showing showing Terra Meridiani is seen in an undated NASA image. NASA will announce a major science finding from the agency?s ongoing exploration of Mars during a news briefing September 28 in Washington   REUTERS/NASA/Greg Shirah/Handout  THIS IMAGE HAS BEEN SUPPLIED BY A THIRD PARTY. IT IS DISTRIBUTED, EXACTLY AS RECEIVED BY REUTERS, AS A SERVICE TO CLIENTS. FOR EDITORIAL USE ONLY. NOT FOR SALE FOR MARKETING OR ADVERTISING CAMPAIGNS - RTX1SW3X

Image: REUTERS/NASA/Greg Shirah

Brian Wallheimer
Journalist, Purdue University
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Education and Skills?
The Big Picture
Explore and monitor how Space is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Space

Early Mars may have had rings like Saturn, and might have them again, according to a new model. The research suggests that debris, pushed into space from an asteroid or other body, slammed into the red planet around 4.3 billion years ago and alternates between becoming a planetary ring and clumping up to form a moon.

A theory exists that Mars’ large North Polar Basin or Borealis Basin, which covers about 40 percent of the planet in its northern hemisphere, results from that impact, sending debris into space.

“That large impact would have blasted enough material off the surface of Mars to form a ring,” says Andrew Hesselbrock, a doctoral student in physics and astronomy at Purdue University.

The new model suggests that as the ring formed and the debris slowly moved away from the planet and spread out, it began to clump and eventually formed a moon. Over time, Mars’ gravitational pull would have pulled that moon toward the planet until it reached the Roche limit, the distance within which the planet’s tidal forces will break apart a celestial body that is held together only by gravity.

Phobos, one of Mars’ moons, is getting closer to the planet. According to the model, Phobos will break apart upon reaching the Roche limit and become a set of rings in roughly 70 million years.

The Martian moon Phobos, seen here in a photo taken by NASA’s Mars Reconnaissance Orbiter from 4,200 miles away. Image: NASA

Depending on where the Roche limit is, this cycle may have repeated between three and seven times over billions of years. Each time a moon broke apart and reformed from the resulting ring, its successor moon would be five times smaller than the last, and debris would have rained down on the planet, possibly explaining enigmatic sedimentary deposits found near Mars’ equator.

“You could have had kilometer-thick piles of moon sediment raining down on Mars in the early parts of the planet’s history, and there are enigmatic sedimentary deposits on Mars with no explanation as to how they got there,” says David Minton, assistant professor of earth, atmospheric and planetary sciences. “And now it’s possible to study that material.”

Other theories suggest that the impact with Mars that created the North Polar Basin led to the formation of Phobos 4.3 billion years ago, but Minton says it’s unlikely the moon could have lasted all that time.

Also, Phobos would have had to form far from Mars and would have had to cross through the resonance of Deimos, the outer of Mars’ two moons. Resonance occurs when two moons exert gravitational influence on each other in a repeated periodic basis, as major moons of Jupiter do. By passing through its resonance, Phobos would have altered Deimos’ orbit. But Deimos’ orbit is within one degree of Mars’ equator, suggesting it has had no effect on Phobos.

“Not much has happened to Deimos’ orbit since it formed,” Minton says. “Phobos passing through these resonances would have changed that.”

Richard Zurek of NASA’s Jet Propulsion Laboratory in Pasadena, California, is the project scientist for NASA’s Mars Reconnaissance Orbiter, whose gravity mapping provided support for the hypothesis that the northern lowlands come from a massive impact.

“This research highlights even more ways that major impacts can affect a planetary body,” he says.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Education and SkillsEmerging Technologies
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

How to harness generative AI and other emerging technologies to close the opportunity gap

Jeff Maggioncalda

June 21, 2024

About Us

Events

Media

Partners & Members

  • Sign in
  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum