Fourth Industrial Revolution

This sea creature could help us regenerate damaged heart tissue

Professor Tal Dvir (R) and a researcher stand next to a 3-D printer during their interview with Reuters about their development of a 3D printed patch comprised of lab-grown heart tissue and nano-electronics that could potentially revolutionize the treatment of heart disease, at a laboratory in Tel Aviv University March 16, 2016. Picture taken March 16, 2016. REUTERS/ Nir Elias - RTSCT4Y

Human muscle regeneration might be possible, according to Mark Martindale. Image: REUTERS/ Nir Elias

Stephanie Livingston
Writer, Futurity
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Fourth Industrial Revolution?
The Big Picture
Explore and monitor how Global Health is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Global Health

When scientists decided to trace the evolutionary origin of muscle cells, like the ones that form our hearts, they looked in an unlikely place: the genes of animals without hearts or muscles.

Researchers found genes known to form hearts cells in humans and other animals in the gut of a muscle-less and heartless sea anemone—a sea creature that has superpower-like abilities: Cut it into many pieces and each piece will regenerate into a new animal.

So why can the sea anemone regenerate and we can’t? An analysis of the function of its “heart genes” shows a difference in the way they interact with one another, which may help explain its ability to regenerate, says Mark Martindale, a biology professor at the University of Florida and director of the Whitney Lab for Marine Bioscience in St. Augustine.

Published in the Proceedings of the National Academy of Sciences, the findings point to potential for tweaking communication between human genes and advancing our ability to treat heart conditions and stimulate regenerative healing.

“Our study shows that if we learn more about the logic of how genes that give rise to heart cells talk to each other, muscle regeneration in humans might be possible,” Martindale says.

Image: Futurity

These heart genes generate what engineers calls lockdown loops in vertebrates and flies, which means that once the genes are turned on, they tell each other to stay on in an animal’s cells for its entire lifetime. In other words, animals with a lockdown on their genes cannot grow new heart parts or use those cells for other functions.

“This ensures that heart cells always stay heart cells and cannot become any other type of cell,” Martindale says.

The findings support the idea that definitive muscle cells found in the majority of animals came from a bifunctional gut tissue that had both absorptive and contractile properties. And while the gut tissue of a sea anemone might not look like a beating heart, it does undergo slow, rhythmic peristaltic waves of contraction, much like the human digestive system.

The first animal muscle cells might have been very heart-like. “The idea is these genes have been around a long time and preceded the twitchy muscles that cover our skeleton,” Martindales says.

Continued research could one day allow scientists to coax muscles cells into regenerating different kinds of new cells, including more heart cells, researchers say.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Fourth Industrial RevolutionHealth and Healthcare SystemsNature and Biodiversity
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

EU falling short of digital transformation goals, new report finds

David Elliott

July 19, 2024

About Us

Events

Media

Partners & Members

  • Sign in
  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum