Fourth Industrial Revolution

Quantum computing might have just gone to a whole new level

A D-Wave Vesuvius processor is pictured during a media tour of the Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center in Mountain View, California, December 8, 2015. Housed inside the NASA Advanced Supercomputing (NAS) facility, the 1,097-qubit system is the largest quantum annealer in the world and a joint collaboration between NASA, Google, and the Universities Space Research Association (USRA).  REUTERS/Stephen Lam - GF10000259192

Researchers from the University of Tokyo have developed a computing power unlike anything we’ve experienced before. Image: REUTERS/Stephen Lam

Dom Galeon
Writer, Futurism

In brief

A pair of researchers from the University of Tokyo have developed what they're calling the "ultimate" quantum computing method. Unlike today's systems, which can currently only handle dozens of qubits, the pair believes their model will be able to process more than a million.

Around and around

Today’s working quantum computers are already more powerful than their traditional computing counterparts, but a pair of researchers from the University of Tokyo think they’ve found a way to make these remarkable machines even more powerful. In a research paper published in Physical Review Letters, Akira Furusawa and Shuntaro Takeda detail their novel approach to quantum computing that should allow the machines to perform a far greater number of computations than other quantum computers.

At the center of their new method is a basic optical quantum computing system — a quantum computer that uses photons (light particles) as quantum bits(qubits) — that Furusawa devised in 2013.

This machine occupies a space of roughly 6.3 square meters (67 square feet) and can handle only a single pulse of light, and increasing its capabilities requires the connecting of several of these large units together, so instead of looking into ways to increase its power by expanding the system’s hardware, the researchers devised a way to make one machine accommodate many pulses of light via a loop circuit.

In theory, multiple light pulses, each carrying information, could go around the circuit indefinitely. This would allow the circuit to perform multiple tasks, switching from one to another by instant manipulation of the light pulses.

The power of qubits

Unlike traditional binary bits that are either a one or a zero, qubits are entangled particles that can be either a one, a zero, or both at the same time. These qubits allow quantum computers to perform computations much faster than regular computers can, but most quantum computing models today can manipulate only a dozen or so qubits. Earlier this year, a team of Russian researchers revealed their quantum computer that could handle 51 qubits, and that was a huge breakthrough in the field.

Furusawa and Takeda believe they’ve managed to go well beyond this, asserting in a press release that one of their circuits is theoretically capable of processing over a million qubits. That sort of computing power is unlike anything we’ve ever experienced before. It would be enough to solve the greatest computing problems of today, facilitating breakthroughs in medical research or handling large datasets to improve machine learning models.

The next step is for Furusawa and Takeda to translate their theory into a working model. “We’ll start work to develop the hardware, now that we’ve resolved all problems except how to make a scheme that automatically corrects a calculation error,” Furusawa said, according to The Japan Times. If it works as expected, this system will truly live up to its moniker as the “ultimate” quantum computing method.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Fourth Industrial Revolution

Related topics:
Fourth Industrial RevolutionEconomic Growth
Share:
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

What companies do now will determine their future in the Intelligent Age

Mihir Shukla

December 23, 2024

The rise of gender-inclusive agritech and why it matters

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum