Emerging Technologies

5 ways natural nanotechnology could inspire human design

A nano Bible is displayed at TowerJazz Semiconductor in Migdal Haemek in northern Israel October 29, 2014. The nano sized New Testament developed by an Israeli company has been nominated for the Guinness Book of Records as the World's Smallest Bible, the company said on Tuesday. Jerusalem nano Bible company said it developed a chip smaller than five by five millimetres, which contains the original Greek version of the New Testament (Textus Receptus, or "received text" in Latin). Picture taken October 29, 2014. REUTERS/Amir Cohen (ISRAEL - Tags: RELIGION SCIENCE TECHNOLOGY TPX IMAGES OF THE DAY)

Five sources of inspiration that scientists could use to create the next generation of human technology. Image: REUTERS/Amir Cohen

John Thomas Prabhakar
Lecturer of Physical Chemistry, Bangor University

Though nanotechnology is portrayed as a fairly recent human invention, nature is actually full of nanoscopic architectures. They underpin the essential functions of a variety of life forms, from bacteria to berries, wasps to whales.

In fact, tactful use of the principles of nanoscience can be traced to natural structures that are over 500 million years old. Below are just five sources of inspiration that scientists could use to create the next generation of human technology.

1. Structural colours

The colouration of several types of beetles and butterflies is produced by sets of carefully spaced nanoscopic pillars. Made of sugars such as chitosan, or proteins like keratin, the widths of slits between the pillars are engineered to manipulate light to achieve certain colours or effects like iridescence.

One benefit of this strategy is resilience. Pigments tend to bleach with exposure to light, but structural colours are stable for remarkably long periods. A recent study of structural colouration in metallic-blue marble berries, for example, featured specimens collected in 1974, which had maintained their colour despite being long dead.

Another advantage is that colour can be changed by simply varying the size and shape of the slits, and by filling the pores with liquids or vapours too. In fact, often the first clue to the presence of structural colouration is a vivid colour change after the specimen has been soaked in water. Some wing structures are so sensitive to air density in the slits that colour changes are seen in response to temperature too.

2. Long range visibility

 Complex slit architecture in the wings of the butterfly Thecla opisena.
Image: Science Advances/Wills et al

In addition to simply deflecting light at an angle to achieve the appearance of colour, some ultra-thin layers of slit panels completely reverse the direction of the travel of light rays. This deflection and blocking of light can work together to create stunning optical effects such as a single butterfly’s wings with half-a-mile visibility, and beetles with brilliant white scales, measuring a slim five micrometers. In fact, these structures are so impressive that they can outperform artificially engineered structures that are 25 times thicker.

3. Adhesion

Gecko feet can bind firmly to practically any solid surface in milliseconds, and detach with no apparent effort. This adhesion is purely physical with no chemical interaction between the feet and surface.

 Micro and Nanostructure of Gecko feet.
Image: The National Academy of Sciences

The active adhesive layer of the gecko’s foot is a branched nanoscopic layer of bristles called “spatulae”, which measure about 200 nanometers in length. Several thousand of these spatulae are attached to micron sized “seta”. Both are made of very flexible keratin. Though research into the finer details of the spatulae’s attachment and detachment mechanism is ongoing, the very fact that they operate with no sticky chemical is an impressive feat of design.

Gecko’s feet have other fascinating features too. They are self-cleaning, resistant to self-matting (the seta don’t stick to each other) and are detached by default (including from each other). These features have prompted suggestions that in the future, glues, screws and rivets could all be made from a single process, casting keratin or similar material into different moulds.

Have you read?

4. Porous strength

The strongest form of any solid is the single crystal state – think diamonds – in which atoms are present in near perfect order from one end of the object to the other. Things like steel rods, aircraft bodies and car panels are not single crystalline, but polycrystalline, similar in structure to a mosaic of grains. So, in theory, the strength of these materials could be improved by increasing the grain size, or by making the whole structure single crystalline.

Single crystals can be very heavy, but nature has a solution for this in the form of nanostructured pores. The resultant structure – a meso-crystal – is the strongest form of a given solid for its weight category. Sea urchin spines and nacre (mother of pearl) are both made of meso-crystalline forms. These creatures have lightweight shells and yet can reside at great depths where the pressure is high.

In theory, meso-crystalline materials can be manufactured, although using existing processes would require a lot of intricate manipulation. Tiny nanoparticles would have to be spun around until they line up with atomic precision to other parts of the growing mesocrystals, and then they would need to be gelled together around a soft spacer to eventually form a porous network.

5. Bacterial navigation

Magnetotactic bacteria posses the extraordinary ability to sense minute magnetic fields, including the Earth’s own, using small chains of nanocrystals called magnetosomes. These are grains sized between 30–50 nanometers, made of either magnetite (a form of iron oxide) or, less commonly, greghite (an iron sulphur combo). Several features of magnetosomes work together to produce a foldable “compass needle”, many times more sensitive than man-made counterparts.

Though these “sensors” are only used for navigating short distances (magnetotactic bacteria are pond-dwelling), their precision is incredible. Not only can they find their way, but varying grain size means that they can retain information, while growth is restricted to the most magnetically sensitive atomic arrangements.

However, as oxygen and sulphur combine voraciously with iron to produce magnetite, greghite or over 50 other compounds – only a few of which are magnetic – great skill is required to selectively produce the correct form, and create the magnetosome chains. Such dexterity is currently beyond our reach but future navigation could be revolutionised if scientists learn how to mimic these structures.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Advanced Materials

Related topics:
Emerging TechnologiesIndustries in DepthManufacturing and Value Chains
Share:
The Big Picture
Explore and monitor how Advanced Materials is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

Why it’s time to revisit the value and meaning of work in the age of AI

Judith Wiese

January 14, 2025

How to ensure the safety of modern AI agents and multi-agent systems

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2025 World Economic Forum