This AI-operated robotic hand moves with “unprecedented dexterity”
The Dactyl robotic hand was trained in a simulated environment. Image: REUTERS/Richard Chung
Robotic high five
On Monday, researchers at OpenAI, the nonprofit AI research company co-founded by Elon Musk, introduced Dactyl, an AI system trained to control a robotic hand. According to the researchers, the system can manipulate physical objects in the hand with dexterity never before possible for AI.
The task Dactyl tackled might sound like something you’d teach a toddler: take this six-sided block and move it around until a certain side is on top. Unlike a toddler, though, Dactyl needed more than a century’s worth of experience to learn how to expertly complete the task. But thanks to powerful computers, the researchers were able to pack all that experience into just 50 “real-world” hours.
Practice makes (almost) perfect
The researchers trained Dactyl in a simulated environment — that is, a digital setting with a computer-generated hand — using a technique called domain randomization. They built certain parameters into their simulated environment, such as the cube’s size or the angle of gravity, and then randomized those variables. They had multiple simulated hands doing this at once. By pushing Dactyl to adapt to so many different virtual scenarios, the researchers prepared the AI’s ability to adapt to scenarios in the real world.
After 50 hours of training in the simulated environment, the AI could manipulate a real-world robotic hand to successfully complete its given task 50 times in a row (a successful completion was one in which the system didn’t drop the block or take longer than 80 seconds). To figure out how to move the hand to complete the task, it simply needed to look at the block through a trio of cameras.
One algorithm to train them all
As the researchers note in their blog post, they trained Dactyl using the same algorithm that they used for OpenAI Five, a team of five neural networks trained to play the computer strategy game DOTA 2. Dactyl’s success proves it’s possible to build a general-purpose algorithm that can teach AI to complete two very different tasks. This could make it much easier for researchers to train AI for lots of different purposes in the future, since they wouldn’t need to start the process from scratch.
Don't miss any update on this topic
Create a free account and access your personalized content collection with our latest publications and analyses.
License and Republishing
World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.
The views expressed in this article are those of the author alone and not the World Economic Forum.
Stay up to date:
Emerging Technologies
Forum Stories newsletter
Bringing you weekly curated insights and analysis on the global issues that matter.
More on Emerging TechnologiesSee all
Michele Mosca and Donna Dodson
December 20, 2024