Emerging Technologies

Google's new AI could help to track earthquake aftershocks

A view of a damaged road to Alto Hospicio commune after an earthquake and tsunami hit the northern port of Iquique April 2, 2014. Chilean authorities on Wednesday were assessing the damage from a massive earthquake that struck off the northern coast, causing a small tsunami, but the impact appeared to be mostly limited. The 8.2 magnitude quake that shook northern Chile on Tuesday killed six people and triggered a tsunami with 2-meter (7-foot) waves. REUTERS/Ivan Alvarado (CHILE - Tags: DISASTER)

The current model is barely better than flipping a coin. Image: REUTERS/Ivan Alvarado

Kristin Houser
Writer, Futurism

The secondary shocks.

The destruction that a large earthquake can cause often doesn’t end when the ground stops shaking. Many produce aftershocks, smaller tremors hours or even days later caused by the ground’s reaction to the first quake.

These aftershocks can sometimes cause more damage than the primary quake. And though we can usually predict the size of an aftershock, we haven’t been so great at predicting its location.

Now, that could change. Researchers from Harvard University and Google’s AI division have created a neural network that can assess how likely it is that a particular location will experience an aftershock. The best part? It’s more accurate than the best existing model.

They published their study Wednesday in the journal Nature.

Barely better than a coin flip.

The best tool we have right now for predicting aftershocks is a model known as Coulomb failure stress change. Researchers can calculate the geological stress an earthquake places on surrounding rock and then use the model to determine the likelihood a location will experience an aftershock.

Unfortunately, this model is only slightly more accurate than flipping a coin.

AI to the rescue.

To better predict the location of aftershocks, the team turned to AI.

Image: Nature

First, they fed data on 131,000 mainshock and aftershock earthquakes into a neural network, which they designed to produce a grid of 5 kilometer-by-5 kilometer cells around the site of each mainshock. Next, they fed the neural network data showing how the mainshock changed the stress level at the center of each surrounding cell. The neural network then predicted the likelihood that each cell would be the site of an aftershock.

The researchers tested their neural network on 30,000 mainshock-aftershock events and found that it could predict the site of aftershocks much more accurately than the previously used model.

Have you read?

More to come.

Though the algorithm’s predictions aren’t foolproof, the researchers are pleased with their AI so far and think even more accurate systems could be just on the horizon.

“Aftershock forecasting in particular is a challenge that’s well-suited to machine learning because there are so many physical phenomena that could influence aftershock behavior and machine learning is extremely good at teasing out those relationships,” researcher Phoebe DeVries told Science Daily. “I think we’ve really just scratched the surface of what could be done with aftershock forecasting…and that’s really exciting.”

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Emerging Technologies

Related topics:
Emerging TechnologiesNature and Biodiversity
Share:
The Big Picture
Explore and monitor how Digital Communications is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

Here’s why it’s important to build long-term cryptographic resilience

Michele Mosca and Donna Dodson

December 20, 2024

How digital platforms and AI are empowering individual investors

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum