Emerging Technologies

These 5 projects are using big data to solve some of the world's biggest problems

A 12-inch wafer is displayed at Taiwan Semiconductor Manufacturing Company (TSMC) in Xinchu January 9, 2007. TSMC, the world's top contract chip maker, posted an 18.4 percent fall in December sales on January 10, hurt by clients' unwanted stockpiles, but a recovery looms as a new crop of electronics devices hit store shelves. Picture taken January 9, 2007.  REUTERS/Richard Chung (TAIWAN) - RTR1L1ID

If you've got problems, you'll need big data. Image: REUTERS/Richard Chung

Arezou Soltani Panah
Postdoc Research Fellow, Swinburne University of Technology
Anthony McCosker
Senior Lecturer in Media and Communications, Swinburne University of Technology

Data science has boomed over the past decade, following advances in mathematics, computing capability, and data storage. Australia’s Industry 4.0 taskforce is busy exploring ways to improve the Australian economy with tools such as artificial intelligence, machine learning and big data analytics.

But while data science offers the potential to solve complex problems and drive innovation, it has often come under fire for unethical use of data or unintended negative consequences – particularly in commercial cases where people become data points in annual company reports.

We argue that the data science boom shouldn’t be limited to business insights and profit margins. When used ethically, big data can help solve some of society’s most difficult social and environmental problems.

Industry 4.0 should be underwritten by values that ensure these technologies are trained towards the social good (known as Society 4.0). That means using data ethically, involving citizens in the process, and building social values into the design.

Here are a five data science projects that are putting these principles into practice.

1. Finding humanitarian hot spots

Social and environmental problems are rarely easy to solve. Take the hardship and distress in rural areas due to the long-term struggle with drought. Australia’s size and the sheer number of people and communities involved make it difficult to pair those in need with support and resources.

Our team joined forces with the Australian Red Cross to figure out where the humanitarian hot spots are in Victoria. We used social media data to map everyday humanitarian activity to specific locations and found that the hot spots of volunteering and charity activity are located in and around Melbourne CBD and the eastern suburbs. These kinds of insights can help local aid organisations channel volunteering activity in times of acute need.

Distribution of humanitarian actions across inner Melbourne and local government areas. Blue dots and red dots represent scraped Instagram posts around the hashtags #volunteer and #charity.

2. Improving fire safety in homes

Accessing data – the right data, in the right form – is a constant challenge for data science. We know that house fires are a serious threat, and that fire and smoke alarms save lives. Targeting houses without fire alarms can help mitigate that risk. But there is no single reliable source of information to draw on.

In the United States, Enigma Labs built open data tools to model and map risk at the level of individual neighbourhoods. To do this effectively, their model combines national census data with a geocoder tool (TIGER), as well as analytics based on local fire incident data, to provide a risk score.

Fire fatality risk scores calculated at the level of Census block groups. Image: Enigma Labs
Have you read?

3. Mapping police violence in the US

Ordinary citizens can be involved in generating social data. There are many crowdsourced, open mapping projects, but often the value of data science lies in the work of joining the dots.

The Mapping Police Violence project in the US monitors, make sense of, and visualises police violence. It draws on three crowdsourced databases, but also fills in the gaps using a mix of social media, obituaries, criminal records databases, police reports and other sources of information. By drawing all this information together, the project quantifies the scale of the problem and makes it visible.

A visualisation of the frequency of police violence in the United States. Image: Mapping Police Violence

4. Optimising waste management

The Internet of Things is made up of a host of connected devices that collect data. When embedded in the ordinary objects all around us, and combined with cloud-based analysis and computing, these objects become smart – and can help solve problems or inefficiencies in the built environment.

If you live in Melbourne, you might have noticed BigBelly bins around the CBD. These smart bins have solar-powered trash compactors that regularly compress the garbage inside throughout the day. This eliminates waste overflow and reduces unnecessary carbon emissions, with an 80% reduction in waste collection.

Real-time data analysis and reporting is provided by a cloud-based data management portal, known as CLEAN. The tool identifies trends in waste overflow, which helps with bin placement and planning of collection services.

BigBelly bins are being used in Melbourne’s CBD. Image: Kevin Zolkiewicz/Flickr, CC BY-NC

5. Identifying hotbeds of street harassment

A group of four women – and many volunteer supporters – in Egypt developed HarassMap to engage with, and inform, the community in an effort to reduce sexual harassment. The platform they built uses anonymised, crowdsourced data to map harassment incidents that occur in the street in order to alert its users of potentially unsafe areas.

The challenge for the group was to provide a means for generating data for a problem that was itself widely dismissed. Mapping and informing are essential data science techniques for addressing social problems.

Mapping of sexual harassment reported in Egypt. Image: HarassMap

Building a better society

Turning the efforts of data science to social good isn’t easy. Those with the expertise have to be attuned to the social impact of data analytics. Meanwhile, access to data, or linking data across sources, is a major challenge – particularly as data privacy becomes an increasing concern.

While the mathematics and algorithms that drive data science appear objective, human factors often combine to embed biases, which can result in inaccurate modelling. Digital and data literacy, along with a lack of transparency in methodology, combine to raise mistrust in big data and analytics.

Nonetheless, when put to work for social good, data science can provide new sources of evidence to assist government and funding bodies with policy, budgeting and future planning. This can ultimately result in a better connected and more caring society.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Digital Communications

Related topics:
Emerging TechnologiesIndustries in Depth
Share:
The Big Picture
Explore and monitor how Digital Communications is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

Here’s why it’s important to build long-term cryptographic resilience

Michele Mosca and Donna Dodson

December 20, 2024

How digital platforms and AI are empowering individual investors

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum