Health and Healthcare Systems

New MIT machine learning model shows relaxing lockdowns will spike COVID-19 cases

People maintain the one-meter distance in-between each other as they stand in a line to buy groceries at a supermarket during the time government lifted the curfew, as the number of people tested positive for coronavirus disease (COVID-19) in the country increases, in Colombo, Sri Lanka March 24, 2020. REUTERS/Dinuka Liyanawatte     TPX IMAGES OF THE DAY - RC27QF910AWZ

While many western countries are nearing a plateau in cases, we are nowhere near safe levels to relax lockdowns. Image: REUTERS/Dinuka Liyanawatte

Darrell Etherington
Writer, TechCrunch
  • Using publicly available data, MIT have used machine learning to model what relaxing global lockdown rules could do to COVID-19 cases.
  • Countries like Singapore that have decreased quarantine measures after cases plateaued, have experienced a second-wave resurgence in infections.

MIT has developed a new model of the spread of COVID-19 infection, based on publicly available data, combined with established epidemiological equations about outbreaks, and neural network-based inference. The model, described in a new report, proves accurate when trained on data spanning late January to early March in terms of anticipating the actual spread leading up to April 1 in different regions around the world, and it indicates that any immediate or near-term relaxation or reversal of quarantine measures currently in place would lead to an “exponential explosion” in the number of infections.

Have you read?

Researchers at MIT sought to develop a model based just on COVID-19 data, whereas others have used SARS or MERS information to inform their charting of the outbreak’s progress. Combining available COVID-19 info with a neural network-based estimation of the number of infected individuals who are under effective quarantine, and therefore no longer a likely risk of infection to others, allows theirs to go beyond existing models in terms of accurately modelling and predicting the effect of social distancing and isolation measures – and the impact should those measures be curtailed or withdrawn.

MIT’s model shows that the current infection plateau for COVID-19 in the U.S. and Italy will both take place sometime in the next week or so, which matches existing predictions available. That sounds like promising news, and it is in terms of the number of infected patients, and the impact on the healthcare system, but it absolutely should not be interpreted as meaning that this is when it’s okay to start relaxing the measures in place.

In fact, the study concludes that by “relaxing quarantine measures too soon, we have predicted that the consequences would be far more catastrophic,” according to model developer and MIT mechanical engineering professor George Barbastathis, when compared to a similar second-wave resurgence that occurred in Singapore after it began relaxing its own measures too early.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Global Health

Related topics:
Health and Healthcare SystemsFourth Industrial Revolution
Share:
The Big Picture
Explore and monitor how Global Health is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

These collaborations are already tackling climate-driven health risks but more can be done to find solutions

Fernando J. Gómez and Elia Tziambazis

December 20, 2024

Investing in children’s well-being: The urgent need for expanded mental health and psychosocial support funding

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum