Health and Healthcare Systems

'Sluggish' immune response may explain more severe COVID-19

Medical workers wearing personal protective equipment (PPE) tend to a patient suffering from the coronavirus disease (COVID-19), in the Intensive Care Unit (ICU) at Lok Nayak Jai Prakash (LNJP) hospital, in New Delhi, India July 17, 2020. REUTERS/Danish Siddiqui     TPX IMAGES OF THE DAY - RC2ZUH9UU2EL

Immune cells are vital in protecting us from a plethora of diseases. Image: REUTERS/Danish Siddiqui

Bruce Goldman
  • One of the biggest questions emerging from COVID-19 is how the disease can be fatal to some people while having very little affect on others.
  • Stanford University has looked at how the speed of the body's immune response could be vital in determining how well a patient battles the disease.
  • The worse the case of COVID-19, the less effective certain cells of the innate immune system were in responding to the disease.

In severely ill COVID-19 patients, “first-responder” immune cells, which should react immediately to signs of viruses or bacteria in the body, instead respond sluggishly, according to a new study.

The findings may explain the difference between severe and mild cases of COVID-19, the researchers report.

That difference may stem from how our evolutionarily ancient innate immune system responds to SARS-CoV-2, the virus that causes the disease.

Have you read?

One of the great mysteries of COVID-19 infections has been that some people develop severe disease, while others seem to recover quickly. Now we have some insights into why that happens.

Bruce Goldman

Found in all creatures from fruit flies to humans, the innate immune system rapidly senses viruses and other pathogens. As soon as it does, it launches an immediate though somewhat indiscriminate attack on them. It also mobilizes more precisely targeted, but slower-to-get-moving, “sharpshooter” cells belonging to a different branch of the body’s pathogen-defense forces, the adaptive immune system.

“These findings reveal how the immune system goes awry during coronavirus infections, leading to severe disease, and point to potential therapeutic targets,” says Bali Pulendran, professor of pathology and of microbiology and immunology at Stanford University School of Medicine and the senior author of the study, which appears in Science.

COVID-19 Healthcare Delivery Healthy Futures Global Health Future of Health and Healthcare
The immune system goes awry during coronavirus infections, leading to severe disease. Image: Science Magazine

The researchers analyzed the immune response in 76 people with COVID-19 and in 69 healthy people. They found enhanced levels of molecules that promote inflammation in the blood of severely ill COVID-19 patients. Past studies have shown that three of the molecules researchers found are associated with lung inflammation in other diseases but they hadn’t been shown previously in COVID-19 infections.

“These three molecules and their receptors could represent attractive therapeutic targets in combating COVID-19,” says Pulendran. His lab is now testing the therapeutic potential of blocking these molecules in animal models of COVID-19.

The scientists also found elevated levels of bacterial debris, such as bacterial DNA and cell-wall materials, in the blood of those COVID-19 patients with severe cases. The more debris, the sicker the patient—and the more pro-inflammatory substances circulating in his or her blood.

The findings suggest that in cases of severe COVID-19, bacterial products ordinarily present only in places such as the gut, lungs, and throat may make their way into the bloodstream, kick-starting enhanced inflammation that is conveyed to all points via the circulatory system.

But the study also reveals, paradoxically, that the worse the case of COVID-19, the less effective certain cells of the innate immune system were in responding to the disease. Instead of being aroused by material from viruses and bacteria, these normally vigilant cells remained functionally sluggish.

If high blood levels of inflammation-promoting molecules set COVID-19 patients apart from those with milder cases, but blood cells are not producing these molecules, where do they come from? Pulendran believes they originate in tissues somewhere in the body—most likely patients’ lungs, the site of infection.

“One of the great mysteries of COVID-19 infections has been that some people develop severe disease, while others seem to recover quickly,” Pulendran says. “Now we have some insights into why that happens.”

Additional researchers from Stanford, Emory University, the University of Hong Kong, and the Hospital Authority of Hong Kong participated in the work.

Funding for the study came from the National Institutes of Health, the Sean Parker Cancer Institute, the Soffer Endowment, and the Violetta Horton Endowment.

Loading...
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

COVID-19

Share:
The Big Picture
Explore and monitor how COVID-19 is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

These collaborations are already tackling climate-driven health risks but more can be done to find solutions

Fernando J. Gómez and Elia Tziambazis

December 20, 2024

Investing in children’s well-being: The urgent need for expanded mental health and psychosocial support funding

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum