Climate Action

Why the world's peatlands are key to stopping climate change

A channel, blocked with a dam, is seen at a marsh called Galoye, near the town of Cherven, Belarus October 2, 2018. The new GEF (Global Environment Facility) funded and UNDP (United Nations Development Programme) implemented “Wetlands” project, which will help to restore 12,456 ha of the degraded peatland forests, and decisions on restoration/wise management of 260,000 ha of Belarusian peatland forests will be made, according to UNDP in Belarus.  REUTERS/Vasily Fedosenko - RC19D1B8C4D0

Peatlands cover approximately 3.7 million square kilometres, roughly the size of than India. Image: REUTERS/Vasily Fedosenko

Gustaf Hugelius
Senior Lecturer, Physical Geography, Stockholm University
  • Peatlands count for just a few percent of the world's land, but crucially store almost one quarter of soil carbon.
  • They play a vital role in regulating the climate, but they're under threat.
  • A new study from Stockholm University has shown that rising temperatures will mean peatlands will soon start emitting more carbon than they store.
  • Researchers found that by limiting global warming, the worst could be avoided.

Peatlands cover just a few percent of the global land area but they store almost one-quarter of all soil carbon and so play a crucial role in regulating the climate. My colleagues and I have just produced the most accurate map yet of the world’s peatlands – their depth, and how much greenhouse gas they have stored. We found that global warming will soon mean that these peatlands start emitting more carbon than they store.

Have you read?

Peatlands form in areas where waterlogged conditions slow down the decomposition of plant material and peat accumulates. This accumulation of carbon-rich plant remains has been especially strong in northern tundra and taiga areas where they have helped cool the global climate for more than 10,000 years. Now, large areas of perennially frozen (permafrost) peatlands are thawing, causing them to rapidly release the freeze-locked carbon back into the atmosphere as carbon dioxide and methane.

Geoscientists have studied peatlands for a long time. They’ve looked at why some areas have peat but others don’t and they’ve looked at how peatlands work as natural archives through which we can reconstruct what the climate and vegetation was like in the past (or even what human life was life: many well-preserved ancient humans have been found in peat bogs).

Scientists have also long recognised that peatlands are important parts of the global carbon cycle and the climate. When plants grow they absorb CO₂ from the atmosphere and as this material accumulates in the peat, there is less carbon in the atmosphere and therefore the climate will cool in the long-term.

With all this knowledge about how important northern peatlands are, it is perhaps surprising to learn that, until recently, there was no comprehensive map of their depth and how much carbon they store. That is why I led an international group of researchers who put together such a map, which we can use to estimate how the peatlands will respond to global warming. Our work is now published in the journal PNAS.

Peatland covers much of the far north – and often overlaps with permafrost. Image: Hugelius et al / PNAS,

Peatlands are surprisingly difficult to map as their growth is connected to many different local factors, such as how water drains in the landscape. This meant we had to gather more than 7,000 field observations and use new statistical models based on machine learning to create the maps.

We found that peatlands cover approximately 3.7 million square kilometres. If it were a country, “Peatland” would be slightly larger than India. These peatlands also store approximately 415 gigatons (billion tons) of carbon – as much as is stored in all the world’s forests and trees together.

peatlands emissions climate change crisis environment renewable solar energy change transition friendly environment carbon footprint carbon emissions reduction change natural climate change global warming air pollution clean energy power renewables plastic plastics Weather extreme storm hurricane typhoon flooding flood floods danger rain wind windy rainy flash floods Agriculture pollen insects bugs bees honeybees bumblebees farming farms crops crop stable
Sampling peatland in Siberia. Image: Gustaf Hugelius

Almost half of this northern peatland carbon is presently in permafrost, ground that is frozen all year round. But, as the world warms and permafrost thaws, it causes peatlands to collapse and completely changes how they relate to greenhouse gases. Areas that once cooled the atmosphere by storing carbon would instead release more of both CO₂ and methane than they stored. We found that the thaw projected from future global warming will cause releases of greenhouse gas that overshadow and reverse the carbon dioxide sink of all northern peatlands for several hundred years. The exact timing of this switch is still highly uncertain, but it is likely to happen in the later half of this century.

There are regions of very extensive permafrost peatlands in Western Siberia and around Hudson Bay in Canada. These unique environments and ecosystems will be fundamentally changed as the permafrost thaws, and their characteristic mix of frozen peat mounds and small lakes will be replaced by extensive areas of wet fens.

These changes will cause more CO₂ and methane to be released into the atmosphere as the previously frozen peat becomes available for microbes that degrade it. The thaw will also lead to large losses of peat into rivers and streams, which will influence both the food chains and biochemistry of inland waters and the Arctic Ocean.

These new finding further reinforce how urgent it is to rapidly reduce our emissions, as the only way to stop permafrost thaw is to limit global warming. There are no geoengineering solutions that can be deployed in these vast and remote areas. Our results clearly show that more limited global warming of 1.5℃-2℃ would be much less damaging than our current trajectories of 3℃-4℃ degrees or above.

Loading...
Loading...
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

SDG 13: Climate Action

Related topics:
Climate ActionNature and Biodiversity
Share:
The Big Picture
Explore and monitor how SDG 13: Climate Action is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

This new insurance model could transform disaster response funding

Jagan Chapagain

December 17, 2024

The top nature and climate stories of 2024

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum