Industries in Depth

Chemical breakthrough shows how to grow crops in increasingly difficult conditions

Environment Agriculture Climate Change

Roots that are not exposed to ethylene signals will continue to grow down, even in compact soil. Image: Federico Respini

Malcolm Bennett
Professor of Plant Sciences, University of Nottingham
Bipin Pandey
Research scientist, School of Biosciences, University of Nottingham
Sacha Mooney
Professor in Soil Physics and Director of the Hounsfield Facility, University of Nottingham
This article is part of: The Davos Agenda
  • A breakthrough in agriculture has helped explain why roots may struggle to penetrate hard, compact soil.
  • This inability to grow deep into the ground and access nutrient rich soil could cost farmers 25% of their yield.
  • Previously, the understanding was that the roots were unable to penetrate the soil due to a lack of strength.
  • However, research shows that the reason might actually be due to a biological signal which can be “switched off".

For years, conventional wisdom has held that roots don’t grow as deep in hard soil because it’s just too difficult for them to physically push through it. But our new research has unearthed another reason: their growth is controlled by a biological signal which can be “switched off”, enabling them to punch through compacted earth. It’s a discovery that could help crops to grow in even the most damaged of soils.

Soil compaction is a major challenge facing modern agriculture, driven in part by the increasing weight of farm equipment which can pass over the same area of ground many times per season. Squashed under the weight of the soil above, deeper areas are also highly compacted, making it difficult for roots to penetrate to those layers of earth rich in moisture and nutrients.

Have you read?

The impact of this soil compaction is profound: because it reduces root growth, negatively impacting water and nutrient uptake, soil compaction can cause yield losses of up to 25%. In the UK alone, losses associated with soil compaction are estimated between €400 million (£355 million) and €650 million each year.

Climate change is set to make these losses even greater. That’s because, when compaction is combined with drought, crop yields can reduce by up to 75%, which is estimated to cost farmers billions of dollars each year. As droughts become more common, developing crops resistant to these challenges becomes more important.

Despite its clear importance for farmers across the world, the mechanism behind stunted root growth in compacted soil has remained unclear. Roots that failed to penetrate highly compacted soils were simply considered too weak to do so. However, we have discovered that roots are in fact able to penetrate highly compacted soil — after their sensitivity to a plant hormone signal is disrupted.

Root breakthrough

Our study found that this signal or “switch” is controlled by a hormone called ethylene, which is released as a gas from the tips of plant roots. In loose, non-compacted soils, this gas is free to diffuse into the earth. But in hard, compacted soils, the ethylene gas cannot diffuse, and is instead trapped in the area occupied by the root tip — causing ethylene to build up in root tissues themselves.

Agriculture, Food and Beverage Food2020 Future of Food
Ethylene acts as a clear 'stop' signal to the extension of roots into compacted soils. Image: Science Magazine

This ethylene build-up, our study has found, prompts roots to stop growing longer in compacted soil. Ethylene therefore acts as a very clear “stop” signal to the extension of roots into compacted soils.

In our experiments, we used plants with a specific genetic mutation that left them no longer able to sense ethylene signals. We found that roots do have the ability to penetrate compacted soil, but elect not to when presented with the ethylene-based stop signal.

We deliberately performed our studies using two very different types of soil (sand and clay) and two very different species of plant: rice and Arabidopsis (a close relative of oil seed rape). The fact that we observed the same behaviour in different soils and plants suggests that our findings may be widely applicable to other crops, soil types and geographies.

Our findings open up new opportunities to select new, compaction-resistant crops — just as Gregor Mendel, “the father of genetics”, first selectively bred different varieties of peas. Breeders can now simply screen their collections for varieties whose roots are less sensitive to ethylene, choosing to create new plants with this differentiation.

However, as this hormone signal is also important for other plant processes like resistance to pathogens, more targeted gene editing and genetic modification (GM) approaches could also be adopted to only block the ethylene response in root tip tissues, rather than the plant as a whole. Time will tell which of these distinct approaches will prove the most effective.

Boosting agriculture

Our findings have the potential to lead to protected or increased crop yields worldwide, especially given that soil compaction remains a persistent problem in intensive agriculture practices. In Europe alone, 36 million hectares (out of a total of 68 million hectares) of farmed land is prone to soil compaction.

Crops with roots that can penetrate deeper into this compacted soil will offer a number of obvious benefits. First, crop roots will be able to access sources of nutrients in deeper soil layers which are currently unavailable to them. That will in turn support the growth of larger, healthier crops.

Second, crop varieties that have more extensive root systems will be able to secure more reliable water sources, conferring greater resilience during periods of drought stress, which are set to increase with climate change. Finally, modelling suggests that crops with deeper roots bury more carbon in the soil, aiding efforts to sequester carbon from the Earth’s atmosphere to limit climate change.

Our new understanding of how roots penetrate hard soils could be an important step towards breeding new types of crops that could be more resilient to soil compaction. Such crops, we expect, will help to reduce the yield losses associated with major soil stress and damage in various geographies across the world.

Loading...
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Agriculture, Food and Beverage

Related topics:
Industries in DepthFood and WaterForum InstitutionalClimate Action
Share:
The Big Picture
Explore and monitor how Agriculture, Food and Beverage is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

1:49

Impact printing: Robot speed-prints walls by firing lumps of clay

Why having low-carbon buildings also makes financial sense

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum