Climate Action

Arctic storms: How scientists are improving forecasts of dangerous polar lows

A woman and her dog brave the elements during a winter storm on January 22, 2014 in Halifax, Nova Scotia. The winter weather system, which is expected to continue into the night, has battered the Atlantic provinces with gusting winds and heavy snowfall.  REUTERS/Devaan Ingraham (CANADA - Tags: ENVIRONMENT ANIMALS SOCIETY) - GM1EA1N0D5R01

Polar lows can cause heavy snowfall. Image: REUTERS/Devaan Ingraham (CANADA - Tags: ENVIRONMENT ANIMALS SOCIETY) - GM1EA1N0D5R01

Marta Moreno Ibáñez
PhD candidate in Earth and atmospheric sciences, Université du Québec à Montréal (UQAM)
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Climate Action?
The Big Picture
Explore and monitor how Climate Indicators is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Climate Indicators

Loading...
  • Polar lows are short-lived, but intense and hard to forecast storms, that can cause considerable damage with gale-force winds and heavy snowfall.
  • Though often occurring in sparsely populated regions, they can lead to deaths.
  • Improving our ability to forecast these storms can save lives.
  • Marta Moreno Ibáñez from Quebec University explains how scientists are improving the accuracy of forecasting.

Norway’s coastal communities are familiar with polar lows, but they often go unnoticed in Canada. Short-lived, but intense and hard to forecast, polar lows can cause considerable damage with gale-force winds and heavy snowfall.

On Feb. 28, the Norwegian Meteorological Institute warned populations along the coast of Finnmark of an incoming polar low. One week later, another polar low threatened Norwegians, this time near Trondheim.

Have you read?

Polar lows often occur in sparsely populated regions, but they have led to deaths. Therefore, we must improve our ability to forecast these abrupt and intense storms.

My research in atmospheric sciences focuses on these meteorological phenomena. I conduct simulations of polar lows with the Canadian Regional Climate Model in the Centre for the Study and Simulation of Regional-Scale Climate (ESCER).

Polar lows are particularly challenging to forecast due to their small size and short lifetime, and many questions remain unanswered. But after an exhaustive review of the published scientific literature, I’m able to answer many of the questions people have about polar lows.

Small, but intense!

Polar lows are intense maritime storms that develop near the poles during the cold season. With a diametre of less than 1,000 kilometres and typically lasting less than 48 hours, polar lows are smaller — and have a shorter lifetime — than the winter storms that often affect Eastern Canada.

Satellite images of two polar lows
Satellite images of two polar lows with different cloud signatures: comma-shaped (a) over the Norwegian Sea and spiralform (b) over the Barents Sea. Image: Moreno-Ibáñez, M., Laprise, R. and Gachon, P., 2021., CC BY-NC

Polar lows are associated with severe weather conditions, such as strong, sometimes hurricane-force, winds and heavy snow showers. The weather changes associated with polar lows are abrupt.

Consequently, polar lows pose a threat to coastal communities, maritime and air transport, and oil and gas platforms. Some polar lows have caused the loss of human lives. For instance, in October 2001, the Torsvåg polar low developed near a fishing village on Vannøya island, in northern Norway. A boat capsized in the strong winds, killing a crew member.

Closer than we think

Polar lows develop in the northern and southern hemispheres, between the poles and a latitude of around 40 degrees north and 50 degrees south, respectively. They form near the sea-ice edge (where the sea ice meets the open ocean) or snow-covered continents, when very cold air flows out over the relatively warm ocean.

The heat and humidity the ocean provides energy to the cold air to feed the development of polar lows. Polar lows dissipate when they make landfall or move over the sea ice and the energy source disappears.

Near Canada, we observe polar lows over the Labrador Sea, Davis Strait and Hudson Bay. These regions have low population density, so the risk of a polar low affecting a community is small.

Satellite images of a polar low
A polar low east of Labrador. Image: Environment and Climate Change Canada

In other parts of the world polar lows can be dangerous. Norway and Japan suffer from the impacts of these storms since they have important population centres located in the coastal regions where polar lows can develop. The weather associated with polar lows can lead to road and airport closures, and there is also a risk of snows avalanches. For instance, in January 2019, a particularly intense polar low made landfall in Norway, causing road closures and the isolation of a village.

With climate change, we can expect the location and the frequency of polar lows to shift. In the North Atlantic, for example, polar lows may form further north, as the sea ice edge retreats, and with decreased frequency. However, many questions remain unanswered regarding the impact of climate change on the frequency and spatial distribution of polar lows.

Satellite images of a polar low
Infrared image acquired by the instrument AVHRR on board satellite NOAA-19 on 1 March 2021. The image shows the polar low that developed to the west of Norway (in white). Image: Meteorologisk Institutt

Storms that are hard to predict

Accurate forecasts of polar lows are essential to avoid any damage from them. But forecasting polar lows is challenging due to their small size and short lifetime.

As with other weather forecasts, the essential ingredients for a correct polar low forecast are an atmospheric model that performs well and good knowledge of the current state of the atmosphere. Yet a lack of conventional observations (such as observations from surface stations) over the ocean and near the poles means that the initial conditions are still not good enough.

map charting polar lows
Wind direction (arrows), wind speed (colours) and atmospheric pressure (black lines) over the Atlantic on March 1, 2021. Each ‘L’ represents a cyclone, with a small circle showing the polar low just west of the northern coast of Norway. Image: MétéoCentre

The recent development of atmospheric models — a set of equations that describe the evolving state of the atmosphere — that have high resolution allows polar lows to be forecast better than before. Scientists continue to work on these models to improve the ways they represent heat exchange between the ocean and atmosphere, and other important processes.

Despite the fact that the high-resolution models allow us to correctly forecast some polar lows, there is still much work to do in order to succeed at correctly forecasting all these meteorological systems. In the meantime, be on the lookout: the polar low season in the northern hemisphere is not over yet!

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

What’s so funny about climate change?

John Letzing

July 11, 2024

About Us

Events

Media

Partners & Members

  • Sign in
  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum