Fourth Industrial Revolution

This groundbreaking tattoo can indicate your blood oxygen levels

Person in green long-sleeved shirt holding arm out to show multiple rose tattoo.

Researchers have created a 'tattoo' that can measure your blood oxygen levels. Image: Unsplash/Toa Heftiba

Mike Silver-Tufts
Author, Futurity
  • Researchers have created a new implantable sensor made up of gel from the protein components of silk.
  • The sensor monitors blood oxygen levels by glowing when exposed to certain wavelengths of light.
  • The non-invasive 'tattoo' could help patients with chronic conditions to monitor multiple blood components.

Imagine a tattoo that could be functional—telling you how much oxygen you are using when exercising, measuring your blood glucose level at any time of day, or monitoring a number of different blood components or exposure to environmental toxins.

“We could potentially track multiple blood components using a sensor array under the skin.”

Thomas Falcucci, graduate student

The new research is an important step toward making that happen.

The new sensor, which currently is limited to reading oxygen levels, is made up of a gel formed from the protein components of silk, called fibroin. The silk fibroin proteins have unique properties that make them especially compatible as an implantable material.

When they are re-assembled into a gel or film, they can be adjusted to create a structure that lasts under the skin from a few weeks to over a year. When the silk does break down, it is compatible with the body and unlikely to invoke an immune response.

Substances in the blood such as glucose, lactate, electrolytes, and dissolved oxygen offer a window into the body’s health and performance. In health care settings, they are tracked by drawing blood or by patients being attached to bulky machines. Being able to continuously monitor their levels noninvasively in any setting could be a tremendous advantage when tracking certain conditions.

Diabetics, for instance, have to draw blood to read glucose, often on a daily basis, to decide what to eat or when to take medication. By contrast, the vision the researchers mapped out is to make monitoring much easier, literally by shining a light on a person’s condition.

“Silk provides a remarkable confluence of many great properties,” says David Kaplan, professor of engineering in the School of Engineering at Tufts University and lead investigator of the study. “We can form it into films, sponges, gels, and more. Not only is it biocompatible, but it can hold additives without changing their chemistry, and these additives can have sensing capabilities that detect molecules in their environment. The oxygen sensor is a proof of concept for a range of sensors we could create.”

The chemistry of the silk proteins makes it easier for them to pick up and hold additives without changing their properties. To create the oxygen sensor, the researchers used an additive called PdBMAP, which glows when exposed to light of a certain wavelength. That glow has an intensity and duration proportional to the level of oxygen in the environment.

The silk gel is permeable to the fluids around it, so the PdBMAP “sees” the same oxygen levels in the surrounding blood. PdBMAP is also useful because it glows, or phosphoresces, when exposed to light that can penetrate the skin. Other sensor candidates may only respond to wavelengths of light that cannot penetrate the skin.

Have you read?

The researchers rely more on the “duration” component of phosphorescence to quantify oxygen levels, because intensity of the glow can vary with the depth and size of the implant, skin color, and other factors. The duration of the glow decreases as levels of oxygen increase.

In experiments, the implanted sensor detected oxygen levels in animal models in real-time, and accurately tracked high, low, and normal levels of oxygen. The importance of being able to track oxygen levels in patients has grown in public awareness with the COVID-19 pandemic, in which patients had to be admitted for hospital treatment when their oxygen levels became critically low.

“We can envision many scenarios in which a tattoo-like sensor under the skin can be useful,” says Thomas Falcucci, a graduate student in Kaplan’s lab who developed the tattoo sensor.

“That’s usually in situations where someone with a chronic condition needs to be monitored over a long period of time outside of a traditional clinical setting. We could potentially track multiple blood components using a sensor array under the skin.”

Discover

How is the World Economic Forum bringing data-driven healthcare to life?

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Healthcare Delivery

Related topics:
Fourth Industrial RevolutionEmerging Technologies
Share:
The Big Picture
Explore and monitor how Healthcare Delivery is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

What companies do now will determine their future in the Intelligent Age

Mihir Shukla

December 23, 2024

The rise of gender-inclusive agritech and why it matters

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum