Health and Healthcare Systems

Alzheimer's disease: New research offers potential path to treatment

Older couple by the coast, looking into the distance

New research into Alzheimer's may help treatment in the future. Image: Katarzyna Grabowska/Unsplash

Andrea Sturchio
MD, PhD Student, Clinical Neuroscience, Karolinska Institutet
Kariem Ezzat
Research Scientist, Laboratory Medicine, Karolinska Institutet
Samir EL Andaloussi
Professor, Laboratory Medicine, Karolinska Institutet
Loading...
  • Alois Alzheimer's theory that plaques – insoluble clumps of amyloid-beta protein found in the brain – are the cause of Alzheimer’s disease still stands more than 100 years after his discovery.
  • However, researchers in the field believe this fails to explain why the presence of plaques doesn't always cause neurological symptoms.
  • Or why clinical trials using drugs that reduce these plaques have been largely unsuccessful.
  • They recently investigated whether the amount of plaques in the brain or the amount of soluble amyloid-beta 42 remaining is more important for disease progression in people genetically predisposed to Alzheimer's.
  • Those with high levels of amyloid-beta 42 in their cerebrospinal fluid (the liquid around the brain and spinal cord) were protected and their cognition was preserved over the study period, their findings show.
  • This could be key in treating Alzheimer’s and other protein aggregation diseases, such as Parkinson’s and motor neuron disease, the researchers say.

In 1906, Alois Alzheimer, a psychiatrist and neuroanatomist, reported “a peculiar severe disease process of the cerebral cortex” to a gathering of psychiatrists in Tübingen, Germany. The case was a 50-year-old woman who suffered from memory loss, delusions, hallucinations, aggression and confusion – all of which worsened until her untimely death five years later.

In the autopsy, Alzheimer noticed distinctive plaques on her brain. These plaques – clumps of amyloid-beta protein – are still considered to be the cause of Alzheimer’s disease.

However, this theory has two major problems. First, it does not explain why many subjects (even old people) have plaques in their brains in the absence of any neurological symptoms, such as memory loss. Second, clinical trials for drugs that reduce these plaques have been unsuccessful – with one recent exception, but more of that later.

When amyloid-beta protein accumulates in the form of plaques (insoluble clumps), the original soluble form of the protein, which performs important functions in the brain, is consumed and lost. Some studies have shown that reduced levels of soluble amyloid-beta – called amyloid-beta 42 – have led to patients having worse clinical outcomes.

Have you read?

In a recent study, published in the Journal of Alzheimer’s Disease, we investigated whether it’s the amount of plaques in the brain or the amount of amyloid-beta 42 remaining that is more important for Alzheimer’s disease progression.

To answer this question, we studied data on a group of people who have a rare inherited gene mutation that puts them at high risk of developing Alzheimer’s disease. The participants were from the Dominantly Inherited Alzheimer Network cohort study.

We found that the depletion of amyloid-beta 42 (the functional version of amyloid-beta) is more harmful than the amount of plaques (the insoluble clumps of amyloid beta).

Participants had an average of three years follow-up and we found that those with high levels of amyloid-beta 42 in their cerebrospinal fluid (the liquid around the brain and spinal cord) were protected and their cognition was preserved over the study period. This chimes with many studies that showed important functions of amyloid-beta 42 in memory and cognition.

It is also relevant because we studied people with the genetic mutation who develop Alzheimer’s disease, a group that is considered to provide the strongest evidence supporting the idea that amyloid-beta plaques are harmful. However, even in this group, those with higher cerebronspinal fluid (CSF) levels of amyloid-beta 42 remained cognitively normal regardless of the amount of plaques in their brains.

It is also worth mentioning that in some rare, inherited forms of Alzheimer’s disease – for example, in carriers of the so-called Osaka gene mutation or Arctic mutation – people can develop dementia having low levels of amyloid-beta 42 and no detectable plaques. This suggests that plaques aren’t the cause of their dementia, but low levels of amyloid-beta 42 might be.

Discover

What is the World Economic Forum doing to combat Alzheimer's?

Lecanemab – the one recent exception

How will our findings affect drug development and clinical trials for Alzheimer’s disease? Until the recent trial with lecanemab, an antibody drug that reduces plaques, all the drug trials in Alzheimer’s disease have failed.

Some drugs were designed to reduce the levels of amyloid-beta 42, based on the rationale that if levels of the normal protein are reduced, patients will accumulate fewer plaques. Unfortunately, these drugs often made the patient’s condition worse.

Lecanemab was recently reported to have a small but significant effect in reducing cognitive decline. According to previous studies, this drug increases the levels of amyloid-beta 42 in the CSF. This is, again, in line with our hypothesis, namely that the increase of the normal amyloid protein can be beneficial.

We will know more when the results of the lecanemab trial are published. At the moment, all we have is a press release from the makers of the drug.

We think that it will be important for future trials to focus on the levels of amyloid-beta 42, and whether it is beneficial to increase and restore its levels to normal values instead of targeting it for removal. This could be achieved using proteins similar to amyloid-beta 42 – so-called “protein analogues” – but that clump together less than the natural ones.

This active protein replacement approach might become a promising new avenue of treatment for Alzheimer’s and other protein aggregation diseases, such as Parkinson’s and motor neuron disease.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Precision Medicine

Related topics:
Health and Healthcare SystemsWellbeing and Mental Health
Share:
The Big Picture
Explore and monitor how Precision Medicine is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

The key health achievements of COP29, and other top health stories

Shyam Bishen

November 20, 2024

How equitable access to medicines can drive sustainable returns for investors

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum