What is causing mass animal die-offs?
Mass die-offs of animals may be increasing in frequency and — for birds, fishes, and marine invertebrates — in severity as well, according to a study of 727 mass mortality events since 1940.
Despite the ecological importance of individual mass mortality events, in which a larger than normal number of individuals die within a population, little research has been conducted on patterns across mass mortality events. The new study will help researchers better assess trends in mass mortality events and their causes, according to the authors of the paper in the Jan. 12 issue of the Proceedings of the National Academy of Sciences.
“The initial patterns are surprising, in terms of the documented changes to frequencies of occurrences, magnitudes of each event, and the causes of mass mortality,” said Samuel Fey, a postdoctoral fellow in the Department of Ecology and Evolutionary Biology at Yale and co-lead author of the paper. “These data also show that we have a lot of room to improve how we document and study these types of rare events.”
Fey, along with fellow researchers at the University of San Diego and University of California-Berkeley, report that the magnitude of the die-offs has increased in birds, fishes, and marine invertebrates, held steady among mammals, and decreased in frogs and amphibians. The authors recognized that more scientific research has been done on mass mortality events in the last few decades but said even accounting for this “discovery bias” does not explain all of the increase in such events. The increase in mass mortality events appears to be associated with a rise in disease emergence, biotoxicity, and multiple interacting stressors, they note.
Overall, disease was the primary culprit, accounting for 26% of the mass die-offs. The impacts of direct human activity, primarily from environmental contamination, caused 19% of such events. Another major cause was biotoxicity triggered by events such as algae blooms, rapid increases of algae in water systems. Processes directly influenced by climate — such as weather extremes, thermal stress, oxygen stress, or starvation — also contributed accounted collectively for about 25% of mass mortality events.
The most severe events were those with multiple causes, the paper shows.
“This study should improve our understanding of the continuum of mortality patterns and processes that exist between background mortality levels and species-level extinctions,” Fey said.
Adam M. Siepielski of the University of San Diego was co-lead author of the paper. Stephanie M. Carlson of the University of California-Berkeley was senior author. Fey began working on this research while a graduate student at Dartmouth College.
This article is published in collaboration with Yale News. Publication does not imply endorsement of views by the World Economic Forum.
To keep up with Forum:Agenda subscribe to our weekly newsletter.
Author: Bill Hathaway is an Associate Director of Science and Medicine at Yale.
Image: Northern pintail ducks flock to the wetlands of the Lower Klamath National Wildlife Refuge during their migrations in southern Oregon. REUTERS/US Fish and Wildlife Service/Handout
Don't miss any update on this topic
Create a free account and access your personalized content collection with our latest publications and analyses.
License and Republishing
World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.
The views expressed in this article are those of the author alone and not the World Economic Forum.
Stay up to date:
Future of the Environment
The Agenda Weekly
A weekly update of the most important issues driving the global agenda
You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.
More on Nature and BiodiversitySee all
Tania Strauss, Iliass El Fali and Pedro Gomez
November 22, 2024