Economic Growth

Why is global growth so weak?

Juan Antolin-Diaz
Macroeconomist, Fulcrum Asset Management

The slow pace of the recovery from the Great Recession of 2007-2009 has prompted questions about whether the long-run growth rate of GDP in advanced economies is lower now than it has been on average over the past decades, as famously articulated by Robert Gordon and Lawrence Summers (Teulings and Baldwin 2014).

Indeed, evidence of a decline in long-run growth is accumulating. The application of popular statistical tests for structural breaks suggests that evidence in favour of a shift in the mean of US GDP growth has been building up and has recently become significant at the 5% level (Figure 1). The Bai and Perron (1998) test can be used to detect the most likely date at which the break occurred and this is found in the early part of the 2000’s.

Figure 1. Real-time test statistics of the Nyblom and Bai-Perron Tests

Note: The solid gray and blue lines are the values of the test statistics obtained from sequentially re-applying the Nyblom (1989) and Bai and Perron (1998) tests in real time as new National Accounts vintages are being published. In both cases, the sample starts in 1960 and the test is re-applied for every new data release occurring after the beginning of 2000. The dotted line plots the 5% critical value of the test, while the dashed line plots the 10% critical value.

Long run growth projections matter:

  • Orphanides (2003) emphasised how real-time misperceptions about the long-run growth of the economy can play a large role in monetary policy mistakes.
  • Even small changes in assumptions about the long-run growth rate of output can have large implications on fiscal sustainability calculations.

These points highlight the importance of accurately assessing the current long-run growth rate in a timely manner.

In this respect, Figure 1 also highlights that the strategy of applying conventional tests in real-time is therefore not satisfactory for the purpose of real-time decision making. In fact, the detection of change in the mean of GDP growth can arrive with substantial delay. For instance, the Bai and Perron (1998) test would not detect the early 2000s break at a 5% significance level until the summer of 2014, with almost 15 years of delay!

Tracking long-run growth in real time

Since the seminal contributions of Evans (2005) and Giannone et al. (2008), dynamic factor models (DFMs) have become the standard tool to track GDP. These models can incorporate a large amount of information and of exploit high frequency data to make inference about short-term developments in economic activity.[1]

In a recent paper (Antolin-Diaz et al. 2015), we extend this framework by allowing for gradual changes in the mean and the variance of real output growth. By incorporating a large number of economic activity indicators, dynamic factor models are capable of precisely estimating the cyclical comovements in macroeconomic data in a real-time setting. Our extended model exploits this to track changes in the long-run growth rate of GDP in real time, separating them from their cyclical counterpart.

When applied to US data, our model concludes that long-run GDP growth declined meaningfully during the 2000’s and currently stands at about 2.25%, almost one percentage point lower than the post-war average. The results are more consistent with a gradual decline rather than a discrete break (Figure 2, panel a)

Figure 2. US long-run growth estimate: 1960-2014 (% Annualised growth rate)

(a) Posterior long-run growth estimate vs CBO estimate of potential growth

(b) Filtered estimates of long-run growth vs SPF survey

Note: Panel (a) plots the posterior median (solid red), together with the 68% and 90% (dashed blue) posterior credible intervals of long-run GDP growth. The gray circles are the CBO’s estimate of potential growth. Shaded areas represent NBER recessions. In Panel (b), the solid gray line is the filtered estimate of the long-run GDP growth rate, using the vintage of National Accounts available as of mid-2014. The blue diamonds represent the real-time mean forecast from the Livingston Survey of Professional Forecasters of the average GDP growth rate for the subsequent 10 years.

Since in-sample results obtained with revised data often underestimate the uncertainty faced by policymakers in real time, we repeat the exercise using real-time vintages of data. By the summer of 2011, the model would have concluded that a significant decline in long-run growth was behind the slow recovery, well before the structural break tests became conclusive. Moreover, explicitly taking into account movements in long-run growth significantly improves the accuracy of both point and density ‘nowcasts’ of US GDP.

What lies behind the slowdown in long-run growth?

Next, we extend our model in order to disentangle the drivers of secular fluctuations of GDP growth. In our framework, by adding information about aggregate hours worked, long-run growth can be decomposed into the labour productivity and labour input components.

  • The results of this decomposition exercise point to a slowdown in labour productivity as the main driver of recent weakness in US GDP growth, in line with the analysis of Fernald (2014).

Figure 3. Decomposition of long-run US output growth

Note: The figure plots the posterior median (red), together with the 68% and 90% (dashed blue) posterior credible intervals of long-run GDP growth and the posterior median of both long-run labour productivity growth and long-run total hours growth (solid blue and dashed grey lines).

Applying the model to other advanced economies, we provide evidence that the weakening in labour productivity appears to be a global phenomenon.

Figure 4. Decomposition for other advanced economies

(a) Long-run labour productivity

(b) Long-run labour input

Note: Panel (a) displays the posterior median of long-run labour productivity across advanced economies. Panel (b) plots the corresponding estimates of long-run total hours worked. In both panels, ‘Euro Area’ represents a weighted average of Germany, Italy and France.

Moreover, the results of our decomposition exercise indicate that after using the dynamic factor model to remove business-cycle variation in hours and output, the decline in long-run GDP growth that has been observed in the advanced economies since the early 2000s is according to our model entirely accounted for by a decline in long-run productivity growth. Finally, it is interesting to note for the G7 economies long-run productivity growth appears to converge in the cross-section, with the latest estimates suggesting convergence towards a low growth rate, between 0.5 to 1%.[2]

Conclusion

Using a state-of-the-art econometric technique we provide evidence for a slowdown in labour productivity as the main driver of weak global growth in recent years, which supports the narrative of Fernald (2014), also for countries other than the US.

We have demonstrated that long-run movements in labour input and labour productivity are an important feature of the data that can be successfully modelled within the dynamic factor model framework. Our econometric framework remains agnostic about the deep structure of the economy. In principle, these low-frequency movements could be influenced both by demand and supply factors. Disentangling the two is a promising avenue for further research.

This article is published in collaboration with Vox EU. Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: Juan Antolin-Diaz is a Macroeconomist in Fulcrum Asset Management. Thomas Drechsel is a PhD student, LSE. Ivan Petrella is a Senior Research Economist, Bank of England, lecturer at Birkbeck, University of London, and CEPR affiliate.

Image: A man looks at a stock quotation board outside a brokerage in Tokyo. REUTERS/Toru Hanai

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Geo-economics

Related topics:
Economic GrowthGeo-Economics and Politics
Share:
The Big Picture
Explore and monitor how Geo-economics is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

5 ways to go green: How countries can prioritize both equity and climate action

Harsh Vijay Singh and Attilio Di Battista

November 15, 2024

How the Global Alliance for Trade Facilitation helped unlock opportunities for small businesses in Cambodia

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum