Emerging Technologies

Do intelligent people’s brains work more efficiently?

Fabio Bergamin

The brains of more intelligent people are capable of solving tasks more efficiently, which is why these people have superior cognitive faculties, or as Elsbeth Stern, Professor for Research on Learning and Instruction at ETH Zurich, puts it: “when a more and a less intelligent person are given the same task, the more intelligent person requires less cortical activation to solve the task.” Scientists refer to this as the neural efficiency hypothesis, although it ceased being a hypothesis quite some time ago and is now accepted by experts as an undisputed fact, with ample evidence to support it.

While working on her doctoral thesis in Stern’s work group, Daniela Nussbaumer also found evidence of this effect for the first time in a group of people possessing above-average intelligence for tasks involving what is referred to as working memory. “We measured the electrical activity in the brains of university students, enabling us to identify differences in brain activity between people with slightly above-average and considerably above-average IQs,” explained Nussbaumer. Past studies conducted to identify the effect of neural efficiency have generally used groups of people that exhibit extreme variations in intelligence.

Facial memory tested

Psychologists define working intelligence as a person’s ability to associate memories with new information as well as to adapt to changing objectives by filtering out information that has become irrelevant. The frontal lobe plays a pivotal role in these processes. In order to test these abilities, the ETH researchers asked 80 student volunteers to solve tasks of varying complexity on a computer.

One task, for example, was to determine whether individual letters or faces were part of a selection of letters or faces that had been shown to the subjects immediately beforehand. An especially difficult task involved identifying letters and faces shown to the subjects during past runs of the test within a time limit. While the students were completing the tests, the researchers used electroencephalography (EEG) to measure their brain activity. For the results analysis, the researchers had the subjects take a conventional IQ test and then split them into two groups: one with slightly above-average IQs and another with well above-average IQs.

Neural efficiency for moderately difficult tasks

The researchers found no differences in brain activity in either group of subjects when they performed very easy or very difficult tasks. They did, however, see clear differences in the case of moderately difficult tasks. Stern attributes this to the fact that none of the subjects had any trouble whatsoever with the simple tasks and that the difficult tasks were cognitively demanding even for the highly intelligent subjects. In contrast, all subjects succeeded in solving the moderately difficult tasks, but the highly intelligent subjects required fewer resources to do so.

Stern uses the analogy of a more and less efficient car: “When both cars are travelling slowly, neither car consumes very much fuel. If the efficient car travels at maximum speed, it also consumes a lot of fuel. At moderate speeds, however, the differences in fuel consumption become significant.”

Intelligence is not a muscle

So is it possible to use EEG measurements to draw any direct conclusions about intelligence? Stern qualifies the findings: “If you want to learn something about intelligence, you have to perform a conventional IQ test, because these tests still provide the most reliable results,” she says. EEG and other brain activity readings are not precise enough to assess the intelligence of an individual. Still, using these methods may be an interesting way to study how different levels of intelligence are manifested in the brain.

The ETH researchers’ intelligence study also suggests that it is impossible to “exercise” working memory. This has been a controversial issue among scientists in recent years because of contradictory findings in different studies. If subjects practise a certain task for a prolonged period, they improve with time. As Stern and her peers have now shown in their study, people who have practised certain tasks do not have any advantage over their unpractised counterparts when confronted with new, yet similar tasks.

 

This article is published in collaboration with ETH Zurich. Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: Fabio Bergamin writes for ETH Zurich.

 Image: A woman walks past a display of a brain slice of patient “H.M.” at the press preview for the MIT 150 Exhibition at the MIT Museum, celebrating Massachusetts Institute of Technology’s 150 year anniversary, in Cambridge, Massachusetts January 7, 2011. REUTERS/Brian Snyder 

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Neuroscience

Share:
The Big Picture
Explore and monitor how Neuroscience is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

How digital twins are transforming the world of water management

Anja Eimer

November 1, 2024

Balancing innovation and governance in the age of AI

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum