Could there be a potential treatment for Down's syndrome?
REUTERS/National Human Genome Research Institute/Handout. Image: A DNA double helix is seen in an undated artist's illustration.
A study of changes in the patterns of gene activity in the brains of people with Down syndrome reveals that the formation of the brain’s white matter is affected throughout life, a finding that suggests treatment might be possible for the condition that affects 400,000 Americans.
Researchers at Yale University and Boston University found abnormal patterns of gene expression in the developing brain of individuals with Down syndrome that influence the maturation of oligodendrocytes — the cells that make the fatty myelin coating that insulates nerve fibers and make rapid transmission of nerve impulses possible. These expression patterns continue into adulthood and are not limited to early development as previously believed, according to the study published Feb. 25 in the journal Neuron.
“Defective myelination may be one of the factors causing the intellectual disability that is a hallmark of Down syndrome,” said John Silbereis, postdoctoral fellow in the Department of Neuroscience and the Kavli Institute for Neuroscience at Yale, and co-first author of the paper.
It may be possible that individuals with Down syndrome might benefit from myelin-regenerating drugs under development to treat conditions like multiple sclerosis, which are also marked by altered myelination of nerve cells, the authors say.
Typically, people are all born with pairs of 23 chromosomes but all people with Down syndrome have a third copy of chromosome 21. However, the exact mechanisms that cause intellectual disabilities have been difficult to pin down. Under the direction of senior authors Nenad Sestan, professor of neuroscience, genetics and psychiatry at Yale, and Tarik F. Haydar at Boston University, researchers did a comprehensive genomic analysis of brain tissue across ages — from prenatal to 40-year-old adults. This analysis identified over 1,300 genes that were disrupted at some point in the development of individuals with Down syndrome. They found 95% of these genes were in regions of the genome other than chromosome 21.
These results indicate that triplication of chromosome 21 have large and widespread effects on gene expression patterns in individuals with Down syndrome, say the scientists.
Hyo Jung Kang of Yale is a co-first author of the paper. Sestan also holds posts at the Kavli Institute, Section of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and the Child Study Center.
Don't miss any update on this topic
Create a free account and access your personalized content collection with our latest publications and analyses.
License and Republishing
World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.
The views expressed in this article are those of the author alone and not the World Economic Forum.
Stay up to date:
Future of Global Health and Healthcare
The Agenda Weekly
A weekly update of the most important issues driving the global agenda
You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.
More on Fourth Industrial RevolutionSee all
Daniel Dobrygowski and Bart Valkhof
November 21, 2024