Can starving these cells stop a range of allergies?

Influenza virus cells, high-lighted through a florescent microscope, are identified during tests at the World Health Organization (WHO) National Influenza Center in Bangkok on October 21, 2005. Thailand awaited test results on another suspected bird flu case on Friday after a resurgence of the killer virus in Asia, although Indonesian fears the H5N1 strain was mutating eased as a father and son proved negative.

Starving immune cells of key nutrients thwarts their ability to launch an allergic response, according to new research. Image: REUTERS/Adrees Latif

Cornell University

Starving immune cells of key nutrients thwarts their ability to launch an allergic response, according to new research.

The findings illuminate how nutrients help drive tissue inflammation caused by the immune system—an insight that could lead to new treatments for a wide range of inflammatory conditions from hay fever and food allergies to asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF).

Scientists know from both animal model systems and patient-based studies that a class of immune cells, called innate lymphoid cells (ILCs), play a role in promoting allergic diseases in the lung and other organs. In this new study, published in Nature Immunology, investigators discovered that inhibiting the activity of an enzyme called Arginase-1 changes the metabolism within ILCs, cutting off a critical nutrient supply.

Furthermore, disrupting this metabolic pathway in mice shuts down pathologic immune responses that would otherwise promote allergic inflammation in the lung.

“These findings are very exciting and propel us to look deeper into how the immune system is regulated in the context of health and chronic inflammatory diseases,” says senior investigator David Artis, director of the Jill Roberts Institute for Research in Inflammatory Bowel Disease and professor of immunology at Weill Cornell Medicine.

“This report gives us new mechanistic insight to understand how we might be able to design more selective drugs that specifically target ILCs to treat a range of allergic diseases.”

A new target for treatment?

The researchers, led by first author Laurel Monticelli, a postdoctoral associate in Artis’ lab, used mice genetically engineered to delete the gene for Arginase-1 in ILCs, leaving the rest of the immune system intact. They found that when the genetically engineered mice were exposed to an allergen called papain, which is derived from the papaya plant, the mice were unable to mount an allergic response, which in turn prevented the development of lung inflammation.

Monticelli and her colleagues went on to show that the lack of an allergic response was due to the missing Arginase-1 enzyme, which normally provides energy to the cells by breaking down the amino acid arginine into other metabolic nutrients needed by ILCs. Without these nutrients, the ILCs were essentially starved and became unable to proliferate or function.

To explore the potential clinical implications of these findings for human disease, the investigators analyzed lung tissue samples from patients with the chronic inflammatory lung diseases COPD or IPF. The researchers studied the human ILCs within these inflamed tissues and found evidence that these cells expressed Arginase-1.

“While these are still early days in this research, our patient-based analysis, coupled with our mouse model studies, suggests altering Arginase-1 metabolism within these innate immune cells may offer a therapeutic target for multiple inflammatory diseases,” Monticelli says.

Allergies cost over $18 billion a year

Allergies are the sixth-leading cause of chronic illness in the United States with an annual cost in excess of $18 billion. More than 50 million Americans suffer from allergies each year. The investigators’ findings have implications for a broad range of allergic diseases. One of these conditions is the “allergic march,” a medical phenomenon in children in which one allergic disease, such as eczema, rapidly progresses to multiple allergic diseases including asthma and life-threatening food allergies.

Because ILCs have been shown to contribute to tissue inflammation and immunity in multiple disease settings, not just the lung, the investigators said it is possible that therapies aimed at changing the Arginase-1 metabolism of these cells may offer relief for inflammation caused by a variety of allergic diseases.

The National Institutes of Health, the Burroughs Wellcome Fund, the Crohn’s and Colitis Foundation of America, the Edmond J. Safra Foundation/Cancer Research Institute, the National Science Foundation, the Robert Wood Johnson Foundation, the Thoracic Surgery Foundation, and the German Research Foundation supported the work.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Innovation

Share:
The Big Picture
Explore and monitor how Innovation is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2025 World Economic Forum