Fourth Industrial Revolution

Happy or sad, this is how the internet can tell

A man uses his mobile phone in front of a giant advertisement promoting Samsung Electronics' new Galaxy S5 smartphone, at an art hall in central Seoul April 15, 2014. Samsung Electronics Co Ltd's new Galaxy S5 smartphone should outsell its predecessor and defy predictions that the South Korean titan's latest model will struggle in a tough market for high-end handsets, Yoon Han-kil, senior vice president of Samsung's product strategy team, told Reuters in an interview. Picture taken on April 15, 2014. To match Interview SAMSUNG-ELEC-SALES/  REUTERS/Kim Hong-Ji (SOUTH KOREA - Tags: BUSINESS SCIENCE TECHNOLOGY TELECOMS) - RTR3LG96

Clearly, the ability to detect emotion from text is of great interest to social media companies Image: REUTERS/Kim Hong-Ji

Lewis Mitchell
Lecturer in Applied Mathematics, University of Adelaide

Think about what you shared with your friends on Facebook today. Was it feelings of “stress” or “failure”, or perhaps “joy”, “love” or “excitement”? Each time we post on social media, we leave traces of our mood.

Our emotions are valuable commodities, and many companies are developing automated tools to recognise them in a process known as sentiment analysis.

Recently, a leaked report revealed that Facebook can identify when young people are feeling vulnerable, although the company has insisted it did not use the analysis to target users with advertising. Facebook also apologised in 2014 for an experiment on “emotional contagion” in which posts with either “positive” or “negative” sentiment were filtered from users’ feeds.

Clearly, the ability to detect emotion from text is of great interest to social media companies, as well as advertisers. But how does sentiment analysis work, why is it useful and what are the dangers?

How does sentiment analysis work?

While the details of Facebook’s own algorithm are not publicly known, most sentiment analysis techniques fall into two categories: supervised or unsupervised.

Supervised methods rely on labelled data. In other words, these are posts that have been classified manually as containing positive or negative sentiment.

Statistical methods are then used to train models to classify new posts automatically based on the presence of pre-identified words or phrases, for example “stressed” or “relaxed”.

Unsupervised methods, on the other hand, often rely on building a dictionary of scores for different words. One such dictionary developed by my collaborators asked people to give a 1 to 9 happiness score to different words, and then averaged the results: “rainbows”, for example, scored 8.06, while “useless” gets 2.52.

The overall sentiment of a phrase can then be scored by looking at all the words in the post. For example, the average score for the post “My momma always said ‘life is like a box of chocolates’” is an above-average 6.02 according to this dictionary, suggesting it expresses a positive feeling.

What is sentiment analysis used for?

Sentiment analysis is increasingly used by marketers to study trends and make product recommendations.

Imagine a new mobile phone is released; a sentiment analysis of social media posts about the phone may give a company valuable, real-time insight into how it’s performing.

There are broader applications of sentiment analysis. Researchers have recently tracked Donald Trump’s Twitter sentiment over the first 100 days of his presidency and built bots to place market trades when he tweets positively or negatively about specific companies.

Scientists can track emotional trends in other texts as well. For example, we used sentiment analysis to study the emotional arcs of more than 1,000 films through their screenplays. The arc of the 2013 Disney film Frozen is shown below.

 Emotional arc for the movie Frozen.

Many films show similar patterns: regular peaks and troughs of tension and release, followed by a particularly big trough 80% of the way through the film (all hope is lost!), before the final resolution and happy ending. Applying a similar analysis to novels, we showed that most stories follow one of six basic story arcs.

We’re still not that good at sentiment analysis

Given that sentiment analysis often relies on mining social media posts, it raises major ethical concerns, and this debate is only beginnning. Yet the complex nature of language and meaning makes it prone to error.

Take the phrase, “May the force be with you”, which scores 5.35 using our dictionary’s analysis. For any Star Wars fan, it is of course a hugely positive phrase, but it scored modestly in our test because the word “force” is rated a below-average 4.0.

This is understandable when rating this word in isolation, but in context it makes less sense.

Some scepticism of the validity of Facebook’s sentiment analysis capabilities is therefore warranted. It’s entirely conceivable that describing something as “fully sick” on Facebook, a phrase of colloquial endorsement, could lead to an individual’s emotional state being misclassified.

To understand when sentiment analysis does and doesn’t work, it is important to examine the words that drive particular results.

To do this, we use “word shift” diagrams, like the one below for Frozen. This shows which words made the climax of the screenplay sadder than its happy ending: more references to “sadness” and “fear”, but strangely, more “beautiful”.

 Plot comparing the climax of Frozen to its happy ending. The blue bars towards the top of the chart show the top contributing words to the difference in score.

Promise and a warning

Sentiment analysis is a powerful tool, but it’s only a young science and must be used with caution.

Scientists must develop tools that allow us to peer “under the hood” and understand why certain algorithms produce the results they do. This is the only way to diagnose issues with different methods, and more importantly, to educate the public about the field’s possibilities and limitations.

Sentiment analysis research has largely been built on large, public data sets, particularly from social media. It’s important those of us unwittingly providing the data understand what it can and can’t be used for, and how.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Mental Health

Related topics:
Fourth Industrial RevolutionIndustries in DepthWellbeing and Mental Health
Share:
The Big Picture
Explore and monitor how Mental Health is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

1:55

How countries and platforms are making the internet safer for children

AI at work: A practical guide to implementing and scaling new tools

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum