Nature and Biodiversity

How concrete can act as a sponge for air pollution

A man removes dirt from an oven to retrieve baked bricks at a brickyard in the outskirts of Islamabad December 28, 2011. REUTERS/Faisal Mahmood

New research reveals concrete surfaces can reduce air pollution Image: REUTERS/Faisal Mahmood

Gregory Filiano
Media Relations Manager, Stony Brook Medicine

Concrete surfaces can remove sulfur dioxide, a major contributor to air pollution, from the air, new research suggests.

The findings could be a significant step toward the practice of using waste concrete to minimize air pollution.

According to the World Health Organization, as many as seven million premature deaths worldwide may be linked to poor air quality and pollution. Sulfur dioxide emissions are among the most common pollutants into the air globally, with power plants emitting the most sulfur dioxide. Cement kilns also produce approximately 20 percent of all sulfur dioxide industrial emissions.

“Even though producing concrete causes air pollution, concrete buildings in urban areas can serve as a kind of sponge adsorbing sulfur dioxide to a high level,” explains Alex Orlov, associate professor of materials science and chemical engineering in the College of Engineering and Applied Sciences at Stony Brook University.

“Our findings open up the possibility that waste concrete coming from building demolitions can be used to adsorb these pollutants,” Orlov says.

Have you read?

He adds that concrete remains the most widely used material in the world and is inexpensive. Because of this, Orlov emphasizes that “the strategy of using pollution causing material and turning it into an environmental solution could lead to new thinking in urban design and waste management.”

Orlov cautions that the capacity for concrete to adsorb pollutants diminishes over time as the material ages. Crushing concrete, however, can expose new surfaces and restore its pollution removing properties.

The researchers used various cement and cement-based building materials to conduct their experiments. They employed Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray absorption Near Edge Spectroscopy (XANES) to identify the levels of sulfur dioxide adsorption on the materials.

Experiments were conducted at Stony Brook University, Brookhaven National Laboratory’s National Synchrotron Light Source and Center for Functional Nanomaterials, and the National University of Singapore. Orlov is a faculty member of Stony Brook’s Consortium for Inter-Disciplinary Environmental Research.

Additional coauthors of the paper are from Stony Brook University and the National University of Singapore.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Future of the Environment

Related topics:
Nature and BiodiversityHealth and Healthcare Systems
Share:
The Big Picture
Explore and monitor how Future of the Environment is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

World set to breach 1.5°C warming limit in 2024, and other nature and climate stories you need to read this week

Tom Crowfoot

November 12, 2024

How Japan can lead in forest mapping to maximize climate change mitigation

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum