Manufacturing and Value Chains

3D-printing might not kill global trade after all. Here's why

A 3D printing machine applies recycled plastic to shape sunglasses at Belgian start-up w.r.yuma in Antwerp, Belgium, August 30, 2017. Picture taken August 30, 2017.  REUTERS/Francois Lenoir - RC1CB1DAAEC0

The economics of mass manufacturing using 3D printers don't yet add up Image: REUTERS/Francois Lenoir

Wolfgang Lehmacher
Operating Partner, Industrial Innovation Partners, Anchor Group

Last year Adidas has opened its first 3D-printing plant for sports shoes – its highly automated, so-called 'speedfactory' – in Ansbach, a small town in Bavaria in the south-eastern part of Germany.

The German sports-goods company announced similar plans for Atlanta in the US, as well as other Western European markets. In the mid-run these factories will each manufacture half a million pairs of shoes per year.

3D-printing based production – also known as additive manufacturing – helps to bring factories closer to customers and products faster to the markets.

Traditional production can require a one-year process for design, sampling and large-scale manufacturing.

The new way requires, at its best, only days – reducing lead times on average by 66%. The shorter the cycle, the more retailers can place orders based on actual sales instead of estimates. Suppliers deliver what is really needed. Finally, consumers get what they want.

Eventually, consumers will be able to have goods produced by a printer near to them, ready for pick up, or have goods delivered, or printed at home, if a printer is available there.

It's not all about speed

Distributed manufacturing is the name of the concept, and it reduces inventories and carbon footprints. In addition, 3D-printing makes very different and new product designs possible.

Unsurprisingly, companies like Adidas and Nike want to turbocharge their supply chains. The goal is to be short and fast.

But Adidas says that, in parallel to its speedfactory-based, short and fast supply chain, it will also expand its traditional, longer and slower supply chain.

1. The economics for 3D-printing-based mass manufacturing don’t yet work out.

The unit costs for thousands of mass-produced, identical parts, like industrial components are still simply much lower than those manufactured by any other means.

3D-printing also falls short where natural fabrics like leather, cotton, wood and stone, or marble, granite, and minerals, such as rare earths, are needed – either to ensure the functionality of a product, or because they are just demanded by the customer.

Therefore, it might well be a myth that 3D-printing will replace mass manufacturing by mass customization, even in the midterm.

Adidas plans to grow its global athletic wear sales from $290 billion in 2017, to $355 billion in 2021. These additional sales will hardly be reached through the application of just one technology.

Reaching the target will require a mix of technologies and supply chains. Furthermore, moving the manufacture of all 301 million pairs of shoes Adidas produces each year to new sites – not even counting its double digit annual growth – would imply tremendous effort, cost and risk. The investment would be very high: just imagine the number of new speedfactories needed.

2. The technology works best for personalised goods

3D-printing generates significant value in the field of highly personalised goods and to meet demand for smaller quantities at affordable prices.

Parts can be printed on demand, obviating the need for storage.

Boeing deploys 3D-printed parts in jet engines and the technology could save the manufacturer $3 million in construction costs on each B787 jet it builds.

Deutsche Bahn has started to print spare parts to accelerate maintenance processes.

Daimler uses 3D-printing to personalise parts and vehicles, and manufacture smaller batches for automotive customers.

In healthcare, 3D-printing applications range from brain and organ models, to personalised plaster casts and low-cost prosthetic parts. But an example for a global scale supply chain is lacking.

The opening of the speedfactory can be considered a Kitty Hawk moment in the history of additive manufacturing. It is an example of highly automated production in high labour cost countries.

But the most popular technologies currently used in 3D-printing were developed in the early eighties. We still might need to wait some time before we see the first mass-manufactured, 3D-printed jet plane taking off.

3. Personalisation changes the game - but not entirely

One in three consumers wants personalised products, a Deloitte study finds. And this trend will drive major change in global supply chains.

But Mark Zuckerberg still buys only one piece of cloth – a grey T-shirt, he wears every day – and so do millions of consumers.

One-colour sports shirts do not need to be manufactured at the place of consumption, as high-speed delivery is not a prerequisite for success. And this is valid for most long-lasting consumer goods, which represent the major part of today’s consumer demand.

Only designer goods and fashion require a high level of convenience, flexibility, speed and regularly changing models.

However, smart design enables personalisation by using mass-produced parts to produce a broad variety of different models. Different luxury bags of the same brand can be made of the same parts – just stitched together in different ways.

Postponement is another way to enable personalisation in mass-production: by dividing the manufacturing process into the two phases of manufacturing base products and then customising base products.

The base products are mass-manufactured, while finalisation happens in or close to the market.

Postponement pushes the finalisation of a product down to the end of the chain – for example, the colour and certain parts come last. This is a process commonly used in the automotive industry.

3D printing will complement this practice by enabling unique parts to be added at the end, while the base product will continue to be mass-manufactured in traditional ways.

4. Manufacturing technology and customer wants are not the only factors at play

Supply chains are shaped by many factors.

First, different supply chains – fast and slow, short and long – respond to different needs: from bringing resources to the factories near consumer markets, to moving parts through global value chains, to connecting the different players within industrial clusters.

Second, many external factors shape supply and value networks. Among these are geopolitical risks, the availability of skilled workers, the quality of infrastructure, tax considerations, the cost of land and energy, the time and effort to obtain licences.

Different locations have different capabilities, possibilities and brandings: ‘Made in Germany’, for example, is a unique feature, which can hardly be globalised.

These factors not only determine the design of global supply chains, but also the speed and magnitude at which technology-driven nearshoring can advance.

Third, the capacity to manage change and complexity is limited.

Changes can have huge implications – the workforce needs to be taken into account and assets might not have been written off or amortised yet.

Management needs time and energy to keep its focus on customers and markets and ensure the stability and smooth continuation of the business.

Fragmentation has its limits.

How many sites can a management team successfully manage in light of an increasingly complex and competitive business and operating environment?

Focus has major benefits; therefore, management will always seek a certain level of aggregation and concentration of activities and efforts at certain locations to ease the management burden.

Companies will continue to test new technologies and apply them where it makes sense.

3D-printing is one useful enabler to respond to customer needs and wants; an important tool for designers, operations and supply chain managers. The technology will surely further improve and so will other manufacturing technologies.

Long supply chains will still have their role to play. And so will international trade, which helps to keep diverse global production networks going.

In summary, 3D-printing holds high potential in those areas where it is a good fit. But, for now, its revolution has clearly not yet come.

Have you read?
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Technological Transformation

Related topics:
Manufacturing and Value ChainsTrade and Investment
Share:
The Big Picture
Explore and monitor how Advanced Manufacturing is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

2:02

This start-up processes copper concentrates without generating emissions

Convening with purpose: The roadmap to a sustainable workforce in advanced manufacturing

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum