Fourth Industrial Revolution

A.I. is translating messages of long-lost languages

An artist carves an ice sculpture at the Bruges Ice Sculpture Festival and The World's First Digital Ice Art Museum in Bruges, Belgium, November 22, 2018.  REUTERS/Yves Herman - RC11EFB47FD0

Shining a light on ancient languages. Image: REUTERS/Yves Herman

Paul Ratner

There are about 6,500-7,000 languages currently spoken in the world. But that's less than a quarter of all the languages people spoke over the course of human history. That total number is around 31,000 languages, according to some linguistic estimates. Every time a language is lost, so goes that way of thinking, of relating to the world. The relationships, the poetry of life uniquely described through that language are lost too. But what if you could figure out how to read the dead languages? Researchers from MIT and Google Brain created an AI-based system that can accomplish just that.

While languages change, many of the symbols and how the words and characters are distributed stay relatively constant over time. Because of that, you could attempt to decode a long-lost language if you understood its relationship to a known progenitor language. This insight is what allowed the team which included Jiaming Luo and Regina Barzilay from MIT and Yuan Cao from Google's AI lab to use machine learning to decipher the early Greek language Linear B (from 1400 BC) and a cuneiform Ugaritic (early Hebrew) language that's also over 3,000 years old.

Linear B was previously cracked by a human – in 1953, it was deciphered by Michael Ventris. But this was the first time the language was figured out by a machine.

The approach by the researchers focused on 4 key properties related to the context and alignment of the characters to be deciphered – distributional similarity, monotonic character mapping, structural sparsity and significant cognate overlap.

They trained the AI network to look for these traits, achieving the correct translation of 67.3% of Linear B cognates (word of common origin) into their Greek equivalents.

Have you read?

What AI can potentially do better in such tasks, according to MIT Technology Review, is that it can simply take a brute force approach that would be too exhausting for humans. They can attempt to translate symbols of an unknown alphabet by quickly testing it against symbols from one language after another, running them through everything that is already known.

Next for the scientists? Perhaps the translation of Linear A - the Ancient Greek language that no one has succeeded in deciphering so far.

You can check out their paper "Neural Decipherment via Minimum-Cost Flow: from Ugaritic to Linear B" here.

Noam Chomsky on Language’s Great Mysteries

Loading...

Noam Chomsky contemplates the basic, yet still unanswerable, questions of linguistics.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Fourth Industrial Revolution

Related topics:
Fourth Industrial RevolutionIndustries in DepthArts and Culture
Share:
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

We asked 5 tech strategy leaders about inclusive, ethical and responsible use of technology. Here's what they said

Daniel Dobrygowski and Bart Valkhof

November 21, 2024

Why is human-first design essential to the future of the internet?

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum