Climate Action

This seemingly harmless material is contributing to global emissions

Afghan construction workers use asphalt to build a road in Kabul October 22, 2007. REUTERS/Ahmad Masood (AFGHANISTAN) - GM1DWKTJURAA

Asphalt is a significant source of air pollutants in urban areas. Image: REUTERS/Ahmad Masood

William Weir
Writer, Yale News
  • While emissions from motor vehicles are well monitored, emissions from asphalt, found in roofs and roads, is rarely included in air quality management plans.
  • Asphalt emits secondary organic aerosol, a major contributor of PM2.5 pollutants that have significant effects on public health.
  • A new study has looked into asphalt as a contributor to emissions, testing the release of emissions based on its temperature.

Asphalt is a significant source of air pollutants in urban areas, especially on hot and sunny days, according to a new study.

Asphalt is a near-ubiquitous substance—it’s found in roads, on roofs, and in driveways—but its chemical emissions rarely figure into urban air quality management plans.

Spilled asphalt is seen on a major road in the centre of Taipei, Taiwan April 18, 2019. REUTERS/Tyrone Siu     TPX IMAGES OF THE DAY - RC1D3DA95DF0
Image: REUTERS/Tyrone Siu

Common road and roofing asphalts produce complex mixtures of organic compounds, including hazardous pollutants, in a range of typical temperature and solar conditions, researchers report.

Have you read?

Decades of research about and regulations of emissions from motor vehicles and other combustion-related sources have resulted in improved urban air quality. But recent studies show that as those efforts succeeded, numerous non-combustion-related sources have become important contributors of organic compounds.

These can lead to secondary organic aerosol (SOA), a major contributor of PM2.5—an important regulated air pollutant comprising particles smaller than 2.5 micrometers in diameter—that have significant effects on public health.

For the study in Science Advances, researchers collected fresh asphalt and heated it to different temperatures.

Climate Change Automotive Industry Global Health Infrastructure
Asphalt is a near-ubiquitous substance—it’s found in roads, on roofs, and in driveways. Image: Science Advances

“A main finding is that asphalt-related products emit substantial and diverse mixtures of organic compounds into the air, with a strong dependence on temperature and other environmental conditions,” says lead author Peeyush Khare, a graduate student in the lab of Drew Gentner, associate professor of chemical and environmental engineering at Yale University.

After some time, the emissions at summer temperatures leveled out, but they persisted at a steady rate. That suggests there are long-term, continued emissions from asphalt in real-world conditions.

“To explain these observations, we calculated the expected rate of steady emissions and it showed that the rate of continued emissions was determined by the time it takes for compounds to diffuse through the highly viscous asphalt mixture,” Gentner says.

The researchers also examined what happens when asphalt is exposed to moderate solar radiation and saw a significant jump in emissions—up to 300% for road asphalt—demonstrating that solar radiation, and not only temperature, can increase emissions.

“That’s important from the perspective of air quality, especially in hot, sunny summertime conditions,” Khare says.

Paved surfaces and roofs make up approximately 45% and 20% of surfaces in US cities, respectively. The researchers estimated the potential total emissions and formation of SOA in Los Angeles, a key city for urban air quality case studies.

Because of the types of compounds asphalt emits, its potential SOA formation is comparable to motor vehicle emissions in Los Angeles, the researchers say. That implies that finding ways to make roads more environmentally friendly is as important as doing the same for cars and trucks.

Gentner says the effect of asphalt emissions on ozone formation was minimal compared to that of motor vehicles and volatile chemicals in personal care cleaning products—another key emerging source of reactive organic emissions that produces large quantities of SOA in urban areas.

Asphalt is just one piece in the puzzle of urban SOA, Gentner says. “It’s another important non-combustion source of emissions that contributes to SOA production, among a class of sources that scientists in the field are actively working to constrain better.”

Loading...
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Automotive and New Mobility

Related topics:
Climate ActionHealth and Healthcare Systems
Share:
The Big Picture
Explore and monitor how Automotive and New Mobility is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Prioritizing Sustainability in MENA: Mapping Critical Environmental Issues for Regional Businesses

2:01

Students and Indigenous people in Peru are teaming up to save vulnerable turtles

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum