Circular Economy

Mounting e-waste is harming the planet. Here’s how we solve the problem

Electronic waste or e-waste from computers is pictured in a junk shop in Makati City, Philippines.

Most of the world’s electronics are not recycled, posing health and environmental risks. Image: REUTERS/Eloisa Lopez

Callie Babbitt
Associate Professor of Sustainability, Rochester Institute of Technology
Shahana Althaf
Sustainability Scientist, Yale School of the Environment
  • Constant tech upgrades have created a growing global e-waste challenge.
  • While U.S. households now produce less e-waste by weight than in 2015, only about 35% is recycled.
  • If devices decompose in landfills, hazardous compounds can leach into groundwater, including lead and mercury.

It’s hard to imagine navigating modern life without a mobile phone in hand. Computers, tablets and smartphones have transformed how we communicate, work, learn, share news and entertain ourselves. They became even more essential when the COVID-19 pandemic moved classes, meetings and social connections online.

But few people realize that our reliance on electronics comes with steep environmental costs, from mining minerals to disposing of used devices. Consumers can’t resist faster products with more storage and better cameras, but constant upgrades have created a growing global waste challenge. In 2019 alone, people discarded 53 million metric tons of electronic waste.

In our work as sustainability researchers, we study how consumer behavior and technological innovations influence the products that people buy, how long they keep them and how these items are reused or recycled.

Have you read?

Our research shows that while e-waste is rising globally, it’s declining in the U.S. But some innovations that are slimming down the e-waste stream are also making products harder to repair and recycle.

a junkyard full of electronic waste
Sending electronics to junkyards or landfills wastes an opportunity to recycle valuable materials inside them. Image: Joe Sohm/Visions of America /Getty Images

Recycling used electronics

Thirty years of data show why the volume of e-waste in the U.S. is decreasing. New products are lighter and more compact than past offerings. Smartphones and laptops have edged out desktop computers. Televisions with thin, flat screens have displaced bulkier cathode-ray tubes, and streaming services are doing the job that once required standalone MP3, DVD and Blu-ray players. U.S. households now produce about 10% less electronic waste by weight than they did at their peak in 2015.

The bad news is that only about 35% of U.S. e-waste is recycled. Consumers often don’t know where to recycle discarded products. If electronic devices decompose in landfills, hazardous compounds can leach into groundwater, including lead used in older circuit boards, mercury found in early LCD screens and flame retardants in plastics. This process poses health risks to people and wildlife.

Loading...

There’s a clear need to recycle e-waste, both to protect public health and to recover valuable metals. Electronics contain rare minerals and precious metals mined in socially and ecologically vulnerable parts of the world. Reuse and recycling can reduce demand for “conflict minerals” and create new jobs and revenue streams.

But it’s not a simple process. Disassembling electronics for repair or material recovery is expensive and labor-intensive.

Some recycling companies have illegally stockpiled or abandoned e-waste. One Denver warehouse was called “an environmental disaster” when 8,000 tons of lead-filled tubes from old TVs were discovered there in 2013.

The U.S. exports up to 40% of its e-waste. Some goes to regions such as Southeast Asia that have little environmental oversight and few measures to protect workers who repair or recycle electronics.

Disassembling products and assembling data

Health and environmental risks have prompted 25 U.S. states and the District of Columbia to enact e-waste recycling laws. Some of these measures ban landfilling electronics, while others require manufacturers to support recycling efforts. All of them target large products, like old cathode-ray tube TVs, which contain up to 4 pounds of lead.

We wanted to know whether these laws, adopted from 2003 to 2011, can keep up with the current generation of electronic products. To find out, we needed a better estimate of how much e-waste the U.S. now produces.

We mapped sales of electronic products from the 1950s to the present, using data from industry reports, government sources and consumer surveys. Then we disassembled almost 100 devices, from obsolete VCRs to today’s smartphones and fitness trackers, to weigh and measure the materials they contained.

a researcher takes apart a smartphone to recycle the contents
A researcher takes apart a smartphone to find out what materials are inside. Image: Shahana Althaf
a dissected tablet, demonstrating the utility of recycled electronics
This dissected tablet shows the components inside, each of which were logged, weighed and measured by researchers. Image: Callie Babbitt

We created a computer model to analyze the data, producing one of the most detailed accounts of U.S. electronic product consumption and discards currently available.

E-waste is leaner, but not necessarily greener

The big surprise from our research was that U.S. households are producing less e-waste, thanks to compact product designs and digital innovation. For example, a smartphone serves as an all-in-one phone, camera, MP3 player and portable navigation system. Flat-panel TVs are about 50% lighter than large-tube TVs and don’t contain any lead.

But not all innovations have been beneficial. To make lightweight products, manufacturers miniaturized components and glued parts together, making it harder to repair devices and more expensive to recycle them. Lithium-ion batteries pose another problem: They are hard to detect and remove, and they can spark disastrous fires during transportation or recycling.

Popular features that consumers love – speed, sharp images, responsive touch screens and long battery life – rely on metals like cobalt, indium and rare-earth elements that require immense energy and expense to mine. Commercial recycling technology cannot yet recover them profitably, although innovations are starting to emerge.

Apple's robot which can recycle nine different iPhone models
Apple’s new robot, Daisy, can disassemble nine different iPhone models to recover valuable materials that traditional recyclers cannot. Image: Apple

Reenvisioning waste as a resource

We believe solving these challenges requires a proactive approach that treats digital discards as resources, not waste. Gold, silver, palladium and other valuable materials are now more concentrated in e-waste than in natural ores in the ground.

Urban mining,” in the form of recycling e-waste, could replace the need to dig up scarce metals, reducing environmental damage. It would also reduce U.S. dependence on minerals imported from other countries.

two charts showing the concentration of different materials like lead and cobalt within the U.S. e-waste stream
Concentration of hazardous (left) and valuable (right) materials within the U.S. e-waste stream. Image: Althaf et al. 2020

Government, industry and consumers all have roles to play. Progress will require designing products that are easier to repair and reuse, and persuading consumers to keep their devices longer.

We also see a need for responsive e-waste laws in place of today’s dated patchwork of state regulations. Establishing convenient, certified recycling locations can keep more electronics out of landfills. With retooled operations, recyclers can recover more valuable materials from the e-waste stream. Steps like these can help balance our reliance on electronic devices with systems that better protect human health and the environment.

Loading...
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Plastic Pollution

Related topics:
Circular EconomyGlobal Risks
Share:
The Big Picture
Explore and monitor how Plastic Pollution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Creating a plastic-free tourism sector is a challenge. Here's why it's worth it

Marina Novelli and Jo Hendrickx

October 16, 2024

5 experts on how trade and investment can facilitate circular electronics

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum