Geographies in Depth

Australia’s floods are going to get more extreme because of climate change, this expert says

image of the severe flooding in New South Wales

New South Wales in Australia has recently been subjected to extreme flooding. Image: REUTERS/Jaimi Joy

Joelle Gergis
Senior Lecturer in Climate Science, Australian National University
Loading...
  • While Australia's natural rainfall patterns are highly variable, climate change is expected to make flooding more frequent and more extreme.
  • This has been shown during the recent flooding crisis of New South Wales, writes climate scientist Joelle Gergis.
  • The extreme weather can be mostly attributed to greenhouse gas emissions caused by human activity, which disrupt the water cycle and increase atmospheric pressure.
  • More research needs to be done to improve climate risk assessment; the further analysis of historical weather data can increase understanding.

Over the past three years, I’ve been working on the forthcoming report by the United Nations’ Intergovernmental Panel on Climate Change. I’m a climate scientist who contributed to the chapter on global water cycle changes. It’s concerning to think some theoretical impacts described in this report may be coming to life – yet again – in Australia.

The recent flooding in New South Wales is consistent with what we might expect as climate change continues.

Australia’s natural rainfall patterns are highly variable. This means the influence climate change has on any single weather event is difficult to determine; the signal is buried in the background of a lot of climatic “noise”.

Have you read?

But as our planet warms, the water-holding capacity of the lower atmosphere increases by around 7% for every 1℃ of warming. This can cause heavier rainfall, which in turn increases flood risk.

The oceans are also warming, especially at the surface. This drives up both evaporation rates and the transport of moisture into weather systems. This makes wet seasons and wet events wetter than usual.

So while Australia has always experienced floods, disasters like the one unfolding in NSW are likely to become more frequent and intense as climate change continues.

Understanding the basics

To understand how a warming world is influencing the water cycle, it’s helpful to return to the theory.

From year to year, Australia’s climate is subject to natural variability generated by the surrounding Pacific, Indian and Southern oceans. The dominant drivers for a given year set up the background climate conditions that influence rainfall and temperature.

It is a combination of these natural climate drivers that makes Australia the land of drought and flooding rains.

However, Australia’s climate variability is no longer influenced by natural factors alone. Australia’s climate has warmed by 1.4℃ since national records began in 1910, with most of the warming occurring since 1970. Human-caused greenhouse emissions have influenced Australian temperatures in our region since 1950.

This warming trend influences the background conditions under which both extremes of the rainfall cycle will operate as the planet continues to warm. A warmer atmosphere can hold more moisture (higher water vapour content), which can lead to more extreme rainfall events.

a diagram showing how a warmer atmosphere can hold more moisture which can lead to more extreme rainfall events
A warmer atmosphere can hold more moisture which can lead to more extreme rainfall events. Image: Climate Council

Since the winter of 2020, Australia has been influenced by the La Niña phase of the El Niño–Southern Oscillation (ENSO). Historically, sustained La Niña conditions, sometimes with the help of a warmer than average Indian Ocean, have set the scene for severe flooding in eastern Australia.

During these events, easterly winds intensify and oceans around Australia warm. This is associated with the Walker Circulation – a giant seesaw of atmospheric pressure that influences the distribution of warm ocean waters across the Pacific Ocean.

a diagram showing the ocean and atmospheric conditions associated with La Niña conditions.
The ocean and atmospheric conditions associated with La Niña conditions. Image: Bureau of Meteorology

The last La Niña occurred in 2010–2012. It led to widespread flooding across eastern Australia, with particularly devastating effects in Queensland. The event caused the wettest two-year period in the Australian rainfall record, ending the 1997–2009 Millennium Drought.

Oceanographers from UNSW studied the exceptional event. They demonstrated how a warmer ocean increased the likelihood of extreme rain during that event, primarily through increased transport of moist air along the coast.

Their analysis highlighted how long‐term ocean warming can modify rain-producing systems, increasing the probability of extreme rainfall during La Niña events.

It is important to point out that changes in large-scale atmospheric circulation patterns are still not as well understood as fundamental changes in thermodynamics. However, because regional rainfall changes will be influenced by both factors, it will take researchers time to tease everything out.

a diagram showing the NSW rainfall totals for the week ending March 22, 2021
NSW rainfall totals for the week ending March 22, 2021 Image: Bureau of Meteorology

What’s interesting about the 2020–2021 La Niña is that it was weak compared with historical events. The relationship between La Niña and rainfall is generally weaker in coastal NSW than further inland. However, it’s concerning that this weak La Niña caused flooding comparable to the iconic floods of the 1950s and 1970s.

The rainfall totals for the current floods are yet to be analysed. However, early figures reveal the enormity of the downpours. For example, over the week to March 23, the town of Comboyne, southwest of Port Macquarie, recorded an extraordinary 935mm of rainfall. This included three successive days with more than 200mm.

The NSW coast is no stranger to extreme rainfall – there have been five events in the past decade with daily totals exceeding 400mm. However, the current event is unusual because of its duration and geographic extent.

It’s also worth noting the current extreme rainfall in NSW was associated with a coastal trough, not an East Coast Low. Many of the region’s torrential rainfall events in the past have resulted from East Coast Lows, although their rainfall is normally more localised than has been the case in this widespread event.

Remember that as the air warms, its water-holding capacity increases, particularly over the oceans. Current ocean temperatures around eastern and northern Australia are about 1℃ warmer than the long-term average, and closer to 1.5℃ warmer than average off the NSW coast. These warmer conditions are likely to be fuelling the systems driving the extreme rainfall and associated flooding in NSW.

a diagram showing sea surface temperature anomalies along the NSW coast
Sea surface temperature anomalies along the NSW coast Image: Bureau of Meteorology
Discover

What’s the World Economic Forum doing about climate change?

A nation exposed

Weather and climate are not the only influences on extreme flood events. Others factors include the shape and size of water catchments, the presence of hard surfaces in urban areas (which cant’t absorb water), and the density of human settlement in flood-prone areas.

The Hawkesbury–Nepean region in Western Sydney, currently experiencing major flooding, is a prime example. Five major tributaries, including the Warragamba and Nepean Rivers, flow into this extensively urbanised valley.

Loading...

Improving our understanding of historical weather data may help improve future climate change risk assessment. For example, past floods in the Hawkesbury–Nepean have been a lot worse than the current disaster. In 1867, the Hawkesbury River at Windsor reached 19.7 metres above normal, and in 1961 peaked at 14.5 metres. This is worse than the 13.12 metres above normal recorded at Freemans Reach on March 23.

It’s sobering to think the Hawkesbury River once peaked 6 metres higher than what we’re seeing right now. Imagine the potential future flooding caused by an East Coast Low during strong La Niña conditions.

It will take time before scientists can provide a detailed analysis of the 2020–2021 La Niña event. But it’s crystal clear that Australia is very exposed to damage caused by extreme rainfall. Our theoretical understanding of water cycle changes tells us these events will only become more intense as our planet continues to warm.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

How to Save the Planet

Related topics:
Geographies in DepthClimate Action
Share:
The Big Picture
Explore and monitor how Australia is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

BRICS: Here’s what to know about the international bloc

Spencer Feingold

November 20, 2024

How Japan can lead in forest mapping to maximize climate change mitigation

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum