Fourth Industrial Revolution

How 3D-printed organs could save the lives of transplant patients

image of a 3D-printed human heart

A new technique has the potential to help patients who are waiting for tissues and organs. Image: REUTERS/Ralph Orlowski

Saman Naghieh
Design Engineer & Research Assistant, University of Saskatchewan
Loading...
  • The global organ shortage means that many patients die before transplants are available.
  • An emerging field called tissue engineering works on producing artificial tissue and organ substitutes as permanent solutions to organ damage.
  • Biomedical engineering researchers are developing 3D temporary organ structures called scaffolds.
  • These could help regenerate damaged tissues and potentially lead to creating artificial organs.

Due to the global organ shortage and limited organ donors, thousands of patients are left wanting organs and tissues in cases of severe injuries, illness or genetic conditions. Many of these patients die before transplants are available.

Tissue engineering is an emerging field that works on producing artificial tissue and organ substitutes as permanent solutions to replace or repair damage.

As biomedical engineering researchers, we are developing 3D temporary organ structures — called scaffolds — that may help regenerate damaged tissues and potentially lead to creating artificial organs. These tissues can also be used in various tissue engineering applications, including nerve repair in structures constructed from biomaterials.

Have you read?

Printing tissue

Approximately 22.6 million patients require neurosurgical interventions annually around the world to treat damage to the peripheral nervous system. This damage is primarily caused by traumatic events such as motor vehicle accidents, violence, workplace injuries or difficult births. It is anticipated that the cost of global nerve repair and regeneration will reach more than $400 million by 2025.

Current surgical techniques allow surgeons to realign nerve ends and encourage nerve growth. However, the incidence of recovery in the injured nervous system is not guaranteed, and the return of function is almost never complete.

Animal studies on rats have shown that if an injury destroys more than two centimetres of nerves, the gap cannot be bridged properly and may result in the loss of muscle function or feeling. In this condition, it is important to use a scaffold to bridge two sides of the damaged nerve, specifically in case of large nerve injuries.

a diagram showing how large nerve injuries (larger than 2 cm) need a scaffold to act as a bridge to connect two sides of the injured nerve.
Large nerve injuries (larger than 2 cm) need a scaffold to act as a bridge to connect two sides of the injured nerve. Image: Saman Naghieh

3D bioprinting prints 3D structures layer by layer, similar to 3D printers. Using this technique, our research team created a porous structure made of the patient’s neural cells and a biomaterial to bridge an injured nerve. We used alginate — derived from algae — because the human body does not reject it.

While this technique has not yet been tested in people, once refined, it has the potential to help patients waiting for tissues and organs.

Material challenges

Alginate is a challenging material to work with because it collapses easily during 3D printing. Our research focuses on the development of new techniques to improve its printability.

For nerve repair, alginate has favourable properties for living cells growth and functions, but its poor 3D printability considerably limits its fabrication. It means that alginate flows easily during the printing process, and results in a collapsed structure. We developed a fabrication method where cells are contained within a porous alginate structure that is created with a 3D printer.

Previous research used moulding techniques to create a bulk alginate without a porous structure to improve nerve regeneration; the cells do not like such a solid environment. However, 3D-printing a porous alginate structure is challenging and often impossible.

Our research addresses this issue by printing a porous structure made of alginate layer-by-layer rather than a moulded bulk algiante; such structure has interconnected pores and provides a cell-friendly environment. Cells can easily communicate with each other and start the regeneration while the 3D-printed alginate provides a temporary support for them.

image of a 3D printed, artificial ear
A 3D printed, artificial ear made of biomaterial and cells. Image: Saman Naghieh

Researchers are going towards the implementation of 3D-printed structures for patients who suffer from nerve injuries as well as other injuries.

Discover

What is the World Economic Forum doing about the Fourth Industrial Revolution?

After the fabricated alginate structure is implanted in a patient, the big question is if it have enough mechanical stability to tolerate the forces applied by tissues in the body. We developed a novel numerical model to predict the mechanical behaviour of alginate structures.

Our studies will help to understand cell response, which is the main factor to take into account when evaluating the success of the alginate structures.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

3D Printing

Related topics:
Fourth Industrial RevolutionHealth and Healthcare Systems
Share:
The Big Picture
Explore and monitor how 3D Printing is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

What companies do now will determine their future in the Intelligent Age

Mihir Shukla

December 23, 2024

The rise of gender-inclusive agritech and why it matters

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum