How eDNA could revolutionize scientific discoveries and conservation efforts
eDNA era opens new possibilities for communities and non-experts to assist with biological conservation, and can sound the alarm on invasive species entering new regions. Image: Unsplash/ Geoffrey Baumbach
- The ability to identify certain animals living in an environment through environmental DNA, or 'eDNA.' has revolutionized conservation and wildlife monitoring
- A recent assessment led by biologist Jun Yang suggested that “eDNA based studies are entering an exciting and rapidly accelerating era."
- This eDNA era opens new possibilities for communities and non-experts to assist with biological conservation, and can sound the alarm on invasive species entering new regions
You’re schlepping through a remote jungle in search of a rare frog species. You check every leaf, each humid hollow and soggy streambed, and return without seeing a trace of it. But back at the lab, with a small water sample, you can say with utter certainty that the frog lives in that part of the forest.
It’s a plausible scenario thanks to environmental DNA, or “eDNA.” As aquatic creatures go about their watery lives, bits of skin, scales, or mucus carrying their signature genetic material inevitably end up adrift in the water around them. That DNA flotsam from fish, amphibians, mammals, invertebrates, and microbes is now poised to drive a quiet revolution in conservation and wildlife monitoring.
“Publication titles with ‘environmental DNA’ have increased dramatically from 3 in 2000 to 16 in 2010 and to 223 in 2020,” noted a team of scientists in a recent assessment led by biologist Jun Yang. “eDNA based studies [are] entering an exciting and rapidly accelerating era.”
This eDNA era opens new possibilities for communities and non-experts to assist with biological conservation, and can sound the alarm on invasive species entering new regions before anyone spots them. It can help create protected habitat areas if threatened species are found outside their expected range, and give early information on where species are moving into new territories to cope with climate change.
But the allure of eDNA is tempered by a large dose of realism about the technology’s limitations. Although detecting eDNA from a known species confirms that it exists in a certain location, the inverse is not true: you couldn’t rule out the frog’s existence in an area just because you don’t detect eDNA from that species in water samples. Rainfall, water flow, pollution, and species movement patterns and population size are a mere handful of ways that influence how hard it is to pick up remnant DNA in the environment.
Even more concerning is how few species we have mapped DNA for. To detect the fictional rare jungle frog, researchers would have to already know the precise genetic sequence of the species they’re looking for, and would test the water samples with specific tools primed to pick up that combination. There are millions of species that haven’t yet had their DNA mapped or shared where researchers around the world can find and use the information. At the rate scientists are mapping new genomes in parts of the ocean, it would take decades for eDNA to help monitor just the known species.
Don't miss any update on this topic
Create a free account and access your personalized content collection with our latest publications and analyses.
License and Republishing
World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.
The views expressed in this article are those of the author alone and not the World Economic Forum.
Stay up to date:
Nature and Biodiversity
The Agenda Weekly
A weekly update of the most important issues driving the global agenda
You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.
More on Nature and BiodiversitySee all
Tom Crowfoot
November 12, 2024