Nature and Biodiversity

Why wildlife is so essential to spreading plants' seeds

Puffins communicating, Saltee Islands, Ireland.

Birds in particular, are essential for seed dispersal. Image: Wynand van Poortvliet/Unsplash

Evan Fricke
Faculty Fellow in Ecology and Evolutionary Biology, Rice University
Alejandro Ordonez
Assistant Professor of Global Change Biology, Aarhus University
Haldre Rogers
Associate Professor of Ecology, Evolution and Organismal Biology, Iowa State University
Jens-Christian Svenning
Professor of ecology, Aarhus University
This article is part of: Centre for Nature and Climate
Loading...
  • Plants reproduce using seed dispersal, often relying on wildlife to carry their seeds so that their offspring don't grow in their shadow.
  • Today the Earth is losing species at a rapid rate, potentially representing the sixth mass extinction in its history, which could impact seed dispersal.
  • 60% fewer seeds are being dispersed far enough worldwide to keep pace with climate change by shifting locations.

Picture a mature, broad-branched tree like an oak, maple or fig. How does it reproduce so that its offspring don’t grow up in its shadow, fighting for light?

The answer is seed dispersal. Plants have evolved many strategies for spreading their seeds away from the parent plant. Some produce seedlings that float on the wind. Others have fruits that actually explode, ejecting their seeds.

And more than half of all plants rely on wildlife to disperse their seeds. This typically happens when animals eat fruits from plants or carry away their nuts, then excrete or drop the seeds somewhere else. In tropical rainforests, animals disperse the seeds of up to 90% of tree species.

Today the Earth is losing species at a rapid rate, potentially representing the sixth mass extinction in its history. In a newly published study, we examine what this loss means for seed dispersal, focusing on birds and mammals that disperse fleshy-fruited plants.

We assessed how seed dispersers help plants shift their geographic ranges to reach habitats newly suitable for growth – a crucial mechanism for surviving climate change. If not enough seeds disperse to track the environmental conditions like temperature and precipitation that plants require, the plants could be stuck in settings where they will struggle to survive. This could lead to losses of plant species, along with the valuable products and services they provide, ranging from food to carbon storage.

Loading...

A new era for plant movement

Animals have been dispersing seeds for millions of years, but the relationships between plants and their seed dispersers have changed dramatically in our modern era.

Berries in California are no longer eaten by grizzly bears, which disappeared from the state a century ago. On the island of Madagascar, seeds no longer travel in the bellies of gorilla-sized lemurs, which went extinct there about 2,300 years ago. In France, seeds don’t catch a ride on the fur of lions or between the toes of rhinos that once lived there, as shown in prehistoric cave paintings. When animals disperse seeds today, their movement is often hampered by roads, farms or built-up areas.

For most animal-dispersed plants – especially those with large seeds, which require large animals like tapirs, elephants and hornbills to spread them – these changes mean a big reduction in seed dispersal, and a great slowdown of plant movement.

Research by our team and work by many colleagues have uncovered the negative ecological consequences that occur when seed dispersed disappear. Now researchers are assessing how seed dispersal decline is affecting plants’ responses to climate change.

Seedlings sprouting from elephant dung in Malaysia.
Elephant dung serves as fertilizer. Image: Ahimsa Campos Arceiz CC, BY-ND

Quantifying what’s been lost

Only a small fraction of the thousands of seed disperser species and tens of thousands of animal-dispersed plant species have been studied directly. Many seed disperser species are extinct or so rare that they can’t be studied at all.

To overcome this challenge, we pulled together data from published studies showing which bird and mammal seed dispersers eat which fruits, how far they spread the seeds, and how their digestive systems’ effects on the seeds help or hinder germination. These three steps together describe what’s required for successful seed dispersal: A seed must be removed from the mother plant, travel some distance away from it and survive to become a seedling.

Next, we used machine learning to generate predictions for seed dispersal, based on the traits of each species. For example, data on a medium-sized thrush in North America could help us model how a medium-sized thrush species from Asia dispersed seeds, even if the Asian species wasn’t studied directly.

Using our trained model, we could estimate seed dispersal by every bird and mammal species – even rare or extinct species for which there isn’t any species-specific data on the seed dispersal process.

The last step was to compare current seed dispersal to what would be happening if extinctions and species range contractions hadn’t happened. For fleshy-fruited plants, we estimate that because of bird and mammal losses, 60% fewer seeds are being dispersed far enough worldwide to keep pace with climate change by shifting locations. Further, we estimate that if currently endangered seed disperser species such as bonobos, savanna elephants and helmeted hornbills became extinct, global seed dispersal would decline by an additional 15%.

The impact of past seed disperser declines has been greatest in areas including North America, Europe and the southern part of South America. Future losses of endangered species would have their most severe impacts in areas including Southeast Asia and Madagascar.

With fewer seed dispersers present, fewer seeds will be moved far enough to enable plants to adapt to climate change by shifting their ranges.

Areas with with brighter red coloration have lost more climate-tracking seed dispersal function.
Many plants can't survive if certain species go extinct. Image: Fricke et al., 2022, CC BY-ND
Have you read?

Seed dispersers help sustain forests

Seed dispersal also helps forests and other natural ecosystems recover from disturbances like wildfire and deforestation. This means that mammals and birds play a major role in sustaining natural vegetation.

Most forest recovery around the world happens through seed dispersal and natural forest regrowth rather than via people planting trees. Seed dispersal by animals is especially important for tropical forests, which can grow back relatively quickly after they are logged or burned.

Seed dispersers also promote biodiversity by helping to ensure that a large number of plant species can survive and thrive. Ecosystems that contain many plant species with diverse genetic makeups are better equipped to handle uncertain futures, and to sustain the ecosystem functions that humans rely on, such as storing carbon, producing food and timber, filtering water and controlling floods and erosion.

Discover

What is the World Economic Forum doing about nature?

There are ways to increase seed dispersal. Making sure patches of similar habitats are connected helps species move among them. Restoring populations of important seed dispersers, ranging from toucans to bears to elephants, will also help. And global models of seed dispersal like ours can help scientists and land managers think about seed dispersers as a nature-based solution for addressing climate change.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Climate Indicators

Share:
The Big Picture
Explore and monitor how Climate Indicators is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

Resisting resistance: How animal health can prevent a global crisis

Pablo Cifuentes

December 18, 2024

The top nature and climate stories of 2024

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum