Climate Action

Wildfire risk has increased, but we can still influence where and how fires strike

A wildfire raging

As the climate warms, droughts are becoming more severe increasing the likelihood of wildfires. Image: Unsplash/Ross Stone

Stefan H Doerr
Professor of Geography and Director of the Centre for Wildfire Research, Swansea University
Cristina Santín
Investigadora Ramón y Cajal, Instituto Mixto de Investigación en Biodiversidad, Universidad de Oviedo -CSIC
John Abatzoglou
Associate Professor of Engineering, University of California, Merced
Matthew William Jones
NERC Independent Research Fellow in Physical Geography, University of East Anglia
Pep Canadell
Executive Director, CSIRO
Loading...
  • With CO2 levels 50% above those of the pre-industrial era, the planet could reach 2.7 degrees of warming by the end of the century, scientists say.
  • New research has found that increased bouts of severe drought and low humidity are extending the length of the "fire weather" season - at a much faster rate than climate models have predicted.
  • Slowing and reversing the accumulation of CO2 and other greenhouse gases in the Earth’s atmosphere will slow the acceleration of wildfire risk.

Humans have raised CO₂ levels in the atmosphere to 50% above what they were before the industrial revolution. As a result, the world has already warmed by 1.1°C over the past century and reports indicate that it could reach 2.7°C of warming by the end of this century.

Bouts of severe drought, heat and low humidity are becoming more extreme as the climate warms. As climate change makes hot and dry conditions – often termed “fire weather” – more common and severe, vegetation dries out and landscapes become more flammable, pushing up the odds of dangerous wildfires.

Scientists can measure changes in fire weather (temperature, humidity, rainfall and wind) to rate the level of danger of a wildfire striking. In a new global analysis, we found that, in many regions of the world, the pace at which fire weather conditions are increasing is accelerating faster than climate models predicted.

We used weather observations and climate models to assess historical and future trends in fire weather to find out how conditions are changing in specific countries and regions. We also analysed data from other recent studies to assess how likely it is that future changes in fire weather will lead to more wildfires, based on relationships between fire and the climate, human use of the land and changes in plant growth.

We found that the length of the fire weather season (when most fires tend to occur) has already expanded significantly in many regions since the 1980s. On average, this season has lengthened by 27% globally, but the increases have been particularly pronounced in the Amazon, the Mediterranean and the western forests of North America.

Scientists can measure changes in fire weather (temperature, humidity, rainfall and wind) to rate the level of danger of a wildfire striking.
Scientists can measure changes in fire weather (temperature, humidity, rainfall and wind) to rate the level of danger of a wildfire striking. Image: Jones et al. (2022), Author provided/The Conversation

The number of days with extreme fire weather – when temperatures are particularly high, recent rainfall and humidity is particularly low and winds are capable of fanning a blaze – have become 54% more frequent at the global level. Because of this, larger and more severe fires that are difficult to contain are now more likely than they were in the past. This is one of the reasons that some of the recent fires in the western US or Australia have been so extensive and damaging. More extreme fires burn more vegetation, exacting a heavier toll on ecosystems and emitting more CO₂ to the atmosphere.

The number of days with extreme wildfire weather have become 54% more frequent at the global level.
The number of days with extreme wildfire weather have become 54% more frequent at the global level. Image: Jones et al. (2022), Author provided/The Conversation

We also predicted that climate change’s influence on fire weather will escalate in the future, with each additional degree of global warming substantially enhancing the risk of wildfires by preparing the landscape to burn.

If global temperatures reach upwards of 2°C above the pre-industrial average, fire weather conditions will be virtually unrecognisable compared with those in the recent history of most world regions.

Climate change is pushing wildfire risk into uncharted territory worldwide.
Climate change is pushing wildfire risk into uncharted territory worldwide. Image: Jones et al. (2022), Author provided/The Conversation

People still influence wildfire occurrence

Climate change and its effect on fire weather, however, is not the only factor driving changes in wildfire activity. Human actions strongly affect the odds of risky weather conditions spawning a wildfire, either pushing with or pulling against the effect of climate change.

Fires caused by people are especially relevant outside of the vast northern forests of Eurasia and North America, where there are few dense population centres and many fires are set by lightning. Closer to towns and cities, sparks from faulty power lines or agricultural machinery, arson, or the use of fire to burn farming or logging residue, for example, increase the risk of wildfire.

But people have also inadvertently made large conflagrations less likely by making it harder for wildfires to spread through naturally fire-prone landscapes. This includes, for example, converting forest to farmland, or breaking up the highly flammable grassland vegetation of savannahs in Africa, Brazil and northern Australia.

The common approach of fighting fires in naturally fire-prone landscapes – applied in many regions of the US, Australia and Mediterranean Europe – can suppress blazes for a time, but these forests end up accumulating excessive vegetation fuel, which has contributed to more severe wildfires, especially during droughts.

More extreme wildfires burn more vegetation, exacting a heavier toll on ecosystems.
More extreme wildfires burn more vegetation, exacting a heavier toll on ecosystems. Image: Unsplash/Egor Vikhrev

Although weather conditions conducive to wildfires are on an upward trajectory in nearly every part of the world, human actions still mediate or override the climatic influence in many regions. This may seem encouraging, but the effectiveness of human efforts to dampen the role of climate change diminishes with every additional decimal of a degree of warming.

Predicting how climate change and human activity will affect future wildfire risk worldwide is difficult, but one aspect is very clear. Slowing and reversing the accumulation of CO₂ and other greenhouse gases in the Earth’s atmosphere will slow the acceleration of wildfire risk. Weather conditions promoting fire have already increased faster than anticipated in many wildfire-prone regions, and committing to further warming through emissions will undoubtedly raise them further.

Failing to keep global warming under 2°C, the minimal goal of the Paris Agreement, carries a dangerous price: unprecedented wildfire risks on the world stage. What we do next matters.

Discover

What’s the World Economic Forum doing about climate change?

Have you read?
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Climate Crisis

Related topics:
Climate ActionGlobal Cooperation
Share:
The Big Picture
Explore and monitor how Climate Crisis is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

This new insurance model could transform disaster response funding

Jagan Chapagain

December 17, 2024

The top nature and climate stories of 2024

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum