Emerging Technologies

These AI and satellite mapping techniques are speeding up the process of disaster management

Hurricane winds in Florida

It’s much harder to see the big picture in a widespread disaster like hurricanes and other tropical cyclones and time is of the essence. Image: Pixabay

Zhe Zhu
Assistant Professor of Natural Resources and the Environment, University of Connecticut
Su Ye
Postdoctoral researcher in environment and remote sensing, University of Connecticut
Loading...
  • Extreme storms with destructive flooding have been documented with increasing frequency over large parts of the globe in recent years.
  • Satellite-based disaster management approaches have typically relied on visually assessing the latest images, one neighbourhood at a time.
  • Scientists have developed a new system that enables them to automate disaster mapping and provide full coverage of an entire state as soon as the satellite data is released.
  • They are now working on developing near real-time monitoring of the whole conterminous United States.

How artificial intelligence spots the damage

Satellites are already used to identify high-risk areas for floods, wildfires, landslides and other disasters, and to pinpoint the damage after these disasters. But most satellite-based disaster management approaches rely on visually assessing the latest images, one neighborhood at a time.

Our technique automatically compares pre-storm images with current satellite images to spot anomalies quickly over large areas. Those anomalies might be sand or water where that sand or water shouldn’t be, or heavily damaged roofs that don’t match their pre-storm appearance.

Aerial view of damage caused by hurricane.
Hurricane Maria caused serious damage to homes and businesses in Puerto Rico. Image: Wikimedia/Air Force Magazine

Five days after Ian lashed Florida, the map showed yellow alert polygons all over South Florida. We found that it could spot patches of damage with about 84% accuracy.

A natural disaster like a hurricane or tornado often leaves behind large areas of spectral change at the surface, meaning changes in how light reflects off whatever is there, such as houses, ground or water. Our algorithm compares the reflectance in models based on pre-storm images with reflectance after the storm.

Aerial view of Hurricane flooding New Orleans
Hurricane Katrina flooding New Orleans Image: Pixabay/cgcolman

The system spots both changes in physical properties of natural areas, such as changes in wetness or brightness, and the overall intensity of the change. An increase in brightness often is related to exposed sand or bare land due to hurricane damage.

Using a machine-learning model, we can use those images to predict disturbance probabilities, which measures the influences of natural disaster on land surfaces. This approach allows us to automate disaster mapping and provide full coverage of an entire state as soon as the satellite data is released.

The system uses data from four satellites, Landsat 8 and Landsat 9, both operated by NASA and the U.S. Geological Survey, and Sentinel 2A and Sentinel 2B, launched as part of the European Commission’s Copernicus program.

Discover

How has the World Economic Forum helped initiate a more effective response to natural disasters and humanitarian crises?

Real-time monitoring, nationwide

Extreme storms with destructive flooding have been documented with increasing frequency over large parts of the globe in recent years.

While disaster response teams can rely on airplane surveillance and drones to pinpoint damage in small areas, it’s much harder to see the big picture in a widespread disaster like hurricanes and other tropical cyclones, and time is of the essence. Our system provides a fast approach using free government-produced images to see the big picture. One current drawback is the timing of those images, which often aren’t released publicly until a few days after the disaster.

We are now working on developing near real-time monitoring of the whole conterminous United States to quickly provide the most up-to-date land information for the next natural disaster.

Have you read?
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Artificial Intelligence

Related topics:
Emerging TechnologiesClimate Action
Share:
The Big Picture
Explore and monitor how Artificial Intelligence is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

5 ways to achieve effective cyber resilience

Filipe Beato and Jamie Saunders

November 21, 2024

Why AI is Southeast Asia's new engine for profitable growth

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum